Frederic Schuller
Inverse Spectral Theorem - L10 - Frederic Schuller
Periodic potentials - L21 - Frederic Schuller
Quantum Harmonic Oscillator - L16 - Frederic Schuller
Quantum Harmonic Oscillator - L17 - Frederic Schuller
Periodic potentials - L20 - Frederic Schuller
Spin - L13 - Frederic Schuller
The Schrodinger Operator - L19 - Frederic Schuller
Total spin of composite system - L15 - Frederic Schuller
The Fourier Operator - L18 - Frederic Schuller
Composite systems - L14 - Frederic Schuller
Stone's theorem & construction of observables - L12 - Frederic Schuller
Separable Hilbert spaces - L03 - Frederic Schuller
Spectra and perturbation theory - L08 - Frederic Schuller
Spectral Theorem - L11 - Frederic Schuller
Self adjoint and essentially self-adjoint operators - Lec 07 - Frederic Schuller
Case study: momentum operator - Lec09 - Frederic Schuller
Integration of measurable functions - Lec06 - Frederic Schuller
Measure Theory -Lec05- Frederic Schuller
Projectors,bars and kets - Lec 04 - Frederic Schuller
Banach Spaces - Lec02 - Frederic Schuller
Differentiable structures definition and classification - Lec 07 - Frederic Schuller
Axioms of Quantum Mechanics - Lec01 - Frederic Schuller
Application: Kinematical and dynamical symmetries - Lec 28 - Frederic Schuller
Application: Quantum mechanics on curved spaces - Lec 26 - Frederic Schuller
Application: Spin structures - lec 27 - Frederic Schuller
Parallel transport - Lec 23 - Frederic Schuller
Principal fibre bundles - Lec 19 - Frederic Schuller
Covariant derivatives - Lec 25 - Frederic Schuller
Curvature and torsion on principal bundles - Lec 24 - Frederic Schuller
Local representations of a connection on the base manifold: Yang-Mills fields - Lec 22