RSML Research Group at University of Idaho
https://webpages.uidaho.edu/rsml/
Plant-Based Recovery of Rare Earth Elements: Assessing the Feasibility of Phytomining in Idaho
Bagging Regressor
MLP Classifier
Logistic Regression Classifier
Gradient Boosting Classifier
Random Forest Classifier
Histog Graddient Boosting Classifier
K-Nearest Neighbors Classifier
CyCon Perceptron
CyCon NC Classifier
CyCon Dummy Classifier
ML Case Study #5
ML Case Study #4
ML Case Study #3
Ridge Regression
Decision Tree Classifier
Adaptive Boosting (AdaBoost) Regression
ML Phytoremediation Case Study #2
ML Phytomining Case Study #1
Multiclass, multivariable classification using AdaBoost classifier
Multiclass, multivariable classification using bagging classifier
Multiclass, multivariable classification using ridge classifier
Support Vector Regression (SVR): Phytomining
KNN Regression
Decision Tree Regression
Multivariable Regression using Gaussian Process Regression
Multivariable Regression using LinearSVR
Multivariable Regression using KNeighborsRegressor
Energy Consumption using AdaboostRegressor
Multivariable Regression using ExtraTreesRegressor