MIAO Research
This is the YouTube channel of the Mathematical Insights into Algorithms for Optimization (MIAO) research group at the University of Copenhagen and Lund University. Please visit http://www.jakobnordstrom.se/miao-group for more information.
Proof complexity as a computational lens lecture 10: Proof of general method for degree lower bounds
Proof complexity as a computational lens lecture 9: A general method for PC degree lower bounds
WHOOPS '25: Wishes for the VeriPB proof format: An update (Daniel Le Berre)
УПС '25: Нарушение симметрии в проблеме изоморфизма подграфов (Рут Хоффманн)
Упс '25: Журналирование доказательств в CaDiCaL (Флориан Поллитт)
УПС '25: Короткие, компонуемые доказательства без помех (Адриан Ребола-Пардо)
Упс '25: Журналирование псевдобулевых доказательств для оптимального классического планирования (...
WHOOPS '25: A variety of trimming techniques for pseudo-Boolean proof logs (Arthur Gontier)
WHOOPS '25: End-to-end verification for subgraph solving [demo] (Yong Kiam Tan)
WHOOPS '25 Tutorial 6: Proof logging for symmetry breaking
WHOOPS '25 Tutorial 5: Proof logging for preprocessing/presolving in MaxSAT and 0-1 ILP
WHOOPS '25 Tutorial 4: Proof logging for pseudo-Boolean optimization
WHOOPS '25 Tutorial 3: Pseudo-Boolean proof logging for constraint programming
WHOOPS '25 Tutorial 2: Proof logging for subgraph solving
WHOOPS '25 Tutorial 1: An introduction to pseudo-Boolean proof logging
Александрос Холлендер: Приблизительно оптимальные рынки Фишера и необходимость теоремы PCP для PPAD
Proof complexity as a computational lens lecture 8: Nullstellensatz, polynomial calculus, resolution
Proof complexity as a computational lens lecture 7: Resolution size-width lower bounds
Proof complexity as a computational lens lecture 6: Resolution and the clique problem [part 2]
Proof complexity as a computational lens lecture 5: Resolution and the clique problem [part 1]
Proof complexity as a computational lens lecture 4: Feasible interpolation for resolution
Proof complexity as a computational lens lecture 3: Resolution and Tseitin formulas
Proof complexity as a computational lens lecture 2: Resolution and the pigeonhole principle
Proof complexity as a computational lens lecture 1: Introduction
Sreejata K. Bhattacharya and Arkadev Chattopadhyay: Exponential lower bounds for ResLin proofs
Marc Vinyals: Lifting with colourful sunflowers
Bruno Pasqualotto Cavalar: Monotone circuit complexity of matching
Dmitry Sokolov: Searching for falsified clause in random CNFs is hard for randomized communication
Alexander Tesch: Current developments in pseudo-Boolean optimization
Christopher Hojny: A proof system for certifying symmetry and optimality in integer programming