Institut Fourier
L'Institut Fourier, laboratoire de mathématiques de Grenoble, est une unité mixte de recherche CNRS / Université Grenoble Alpes.
Ses activités portent principalement sur les mathématiques fondamentales développées autour de huit grands thèmes de recherche : algèbre et géométries, analyse, combinatoire et didactique, géométrie différentielle, physique mathématique, probabilités, théorie des nombres, topologie. Ses recherches s'ouvrent aussi à d'autres disciplines, telles que la biologie, l'informatique et la physique.
The Institut Fourier, a research department of mathematics, is a joint operation of th CNRS and the Université Joseph Fourier.
The research undertaken at the Institut Fourier is centered around eight themes: algebra and geometries, analysis, combinatorics and didactic, differential geometry, mathematical physics, probability theory, number theory, topology.
https://www-fourier.univ-grenoble-alpes.fr

M. Brion - Algebraic subgroups of Cremona group 1

Grenoble Pi Day 2025 - Étienne Ghys

R.A.S. (jusqu'ici tu vas bien ?)

Andrew Putman - The Steinberg representations

Jacques Darné - Profinite Rigidity and Colorings by Finite Quandles

Louis Funar - Mapping class groups and 4-manifolds

R. Detcherry - On the properties of quantum representations of mapping class groups of surfaces 4

Marco De Renzi - Non-semisimple quantum representations of mapping class groups

Andrew Putman - The topology of the mapping class group and its Torelli subgroup 4

Christine Vespa - Homological stability and stable homology 3

Mai Katada - Stable homology of the IA-automorphism group

Andrew Putman - The topology of the mapping class group and its Torelli subgroup 3

Christine Vespa - Homological stability and stable homology 2

R. Detcherry - On the properties of quantum representations of mapping class groups of surfaces 3

Luis Paris - Automorphism groups of Artin groups of spherical type

Andrew Putman - The topology of the mapping class group and its Torelli subgroup 2

R. Detcherry - On the properties of quantum representations of mapping class groups of surfaces 2

Karen Vogtmann - Finite groups of outer automorphisms of right-angled Artin groups

R. Detcherry - On the properties of quantum representations of mapping class groups of surfaces 1

Christine Vespa - Homological stability and stable homology 1

Andrew Putman - The topology of the mapping class group and its Torelli subgroup 1

Liam Watson - Khovanov invariants via immersed curves 4

Marco Golla - Applications of Heegaard Floer homology 4

Emmanuel Wagner - Foam lectures on link homologies 4

Liam Watson - Khovanov invariants via immersed curves 3

Liam Watson - Khovanov invariants via immersed curves 2

Emmanuel Wagner - Foam lectures on link homologies 3

Marco Golla - Applications of Heegaard Floer homology 3

Marco Golla - Applications of Heegaard Floer homology 1

Emmanuel Wagner - Foam lectures on link homologies 1