Victor Lavrenko
IR20.11 Summary
IR20.8 Learning to rank with an SVM
IR20.10 Learning to rank with click data
IR20.9 Learning to rank: features
IR20.7 Learning to rank for Information Retrieval
IR20.3 Passive-aggressive algorithm (PA)
IR20.5 SVM наглядно объяснено
IR20.2 Классификация с большой маржой
Центроидный классификатор IR20.1
IR20.4 Convergence of the PA algorithm
IR20.6 Последовательная минимальная оптимизация (SMO)
LM.9 Jelinek-Mercer smoothing
LM.7 Good-Turing estimate
LM.4 The unigram model (urn model)
LM.14 Issues to consider
LM.8 Interpolation with background model
LM.2 What is a language model?
LM.10 Dirichlet smoothing
LM.11 Leave-one-out smoothing
LM.5 Zero-frequency problem
LM.3 Query likelihood ranking
LM.1 Overview
LM.6 Laplace correction and absolute discounting
LM.12 Smoothing and inverse document frequency
BIR.10 Estimation with relevant examples
BIR.17 Modelling term frequency
BIR.16 Linked dependence assumption
BIR.12 Example
BIR.3 Probability of relevance