Lecture 82: Reinforcement Learning - Part2|VTU|BCM601|BDS602|BCS602|BAI602|Module 5
Lecture 67: Naive Bayes theorem & problem|BCM601|BDS602|BCS602|BAI602
Lecture 24:Module 2 Continuous & Discrete Probability Distribution|BDS602|BCM601
Lecture 46:Specific To General hypothesis|Problem Solving|BCM601|BDS602|BAI602|BCS602|ML
Lecture 34: Chi square test |BDS602|BCM601|BCS602|BAI602|hyppthesis testing
Lecture 1: Module 1 Need for Machine Learning , Knowledge Pyramid | BCS602 | BDS602| BCM601|
Lecture 36: Principal Component Analysis |PCA| BDS602|BCS602|BAI602|BCS602| VTU| BCM601|ML
Lecture 80: DBSCAN clusteting|Density based clustering|Module 5|bcm601|bds602|bcs602|bai602|VTU|
Lecture 83: ARTIFICIAL NEURAL NETWORKS - Quick revision |BCS602|BCM601|BDS602|BAI602
Lecture 5: MACHINE LEARNINGPROCESS CRISP-DM | VTU | BCS602 | BDS602 | BCM601
Lecture 42: Classical vs adaptive ML systems|Learning types|bcm601|bds602|bai602|bcs602
Lecture 81: Reinforcement Learning|Part 1|Module 5|VTU|BCS602|BCM601|BDS602|BAI602
Lecture 44: Concept Learning|BCM601|BDS602|BCD602|BAI602|MachineLearning|VTU
Lecture 10: Types of Big Data Analytics |BCM601|BDS602|BCS602|VTU
Lecture 12: Big data management | BCM601|BDS602|BCS601|23DS4PCMLG| Machine Learning
Lecture 31: Z-testing | BCM601|BDS602|BCS602
Lecture 20: Five point summary and Box plot with problem solving|BCM601|BDS602|BCS602
Machine Learning Vtu Important Questions| BCM601
Lecture 14: UNIVARIATE DATA ANALYSIS & VISUALIZATION| bar |pie chart|histogram|bcm601|bds602|bcs602
Lecture 19: Find IQR | IQR|BCM601|BCS502|BDS602|module1