Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Genomic imprinting: It takes two to make a thing go right

Автор: The Genetic Basis of Stuff and Things

Загружено: 2021-04-17

Просмотров: 20231

Описание:

A review of: Influence of paternally imprinted genes on development. Barton SC, Ferguson-Smith AC, Fundele R, Surani MA. Development. 1991 Oct;113(2):679-87.

Twitter:   / genetics_stuff  

OTHER VIDEOS YOU MIGHT LIKE:
• Codons don’t overlap in the shagadelic genetic code, baby. Yeah! (Brenner, 1957) -    • Codons don’t overlap in the shagadelic gen...  
• Understanding Quantitative Trait Loci with the help of tomatoes (Paterson et al., 1988) -    • Understanding Quantitative Trait Loci with...  
• Chronic myeloid leukaemia: discovery of the Philadelphia chromosome (Nowell & Hungerford, 1960) -    • Chronic myeloid leukaemia: discovery of th...  

Epigenetics is the modification of gene expression, without changing the DNA sequence. One epigenetic process crucial for normal development is ‘genomic imprinting.’ That is, the silencing of genes. The ‘imprint’ instructs for DNA methylation (thus directly switching genes off), and post-translational histone modifications (to alter DNA accessibility). But the really, really interesting thing about imprinting is that, unlike with most genes, it only actually affects one of the two homologous parental alleles. For instance, if the paternal allele is imprinted, then the maternal allele is the only functional copy of that gene. One way of testing imprinted gene function is by analysing their associated phenotypes, which is exactly what Sheila Barton and her colleagues did in 1991 when studying the role of paternally-imprinted genes on mouse development. They mated F1 female and male mice, collected the F2 fertilised eggs and blastocyst-stage embryos, and then used nuclear transplantation to construct androgenetic (or AG) and gynogenetic (or GG) eggs. In essence, each diploid egg contained not one, but two sets of the paternal or maternal genomes, respectively. After some culturing, the researchers isolated the inner cell mass from each egg, and injected them into blastocysts. These operated blastocysts were transferred to the female mice; after a week, some embryos were dissected out and studied, while others were left to term.

Barton found that the AG embryos were easily distinguishable from their non-AG siblings. When left to term, they exhibited severe growth abnormalities. The spine was severely scoliotic, the ribs enlarged, distorted, fused, and the heart was also enlarged and disorganised. GPI analysis confirmed that in these deformed areas, AG cell contribution was substantial. In contrast, it was especially low in the brain which, correspondingly, displayed no phenotypic change. Barton concluded that the change in shape was proportional to AG cell contribution, but levels above 50% were lethal. In contrast, GG cells cause reciprocal phenotypes with growth reduced by up to 50%, with high contributions in the brain, and low in skeletal muscle.

Barton’s data was so important because it suggested that imprinting of some parental alleles establishes a balance of gene dosage in the developing diploid embryo, and that this balance is essential for normal growth and development. The task for researchers now is to identify other imprinted genes, understand their phenotypic effects and roles during development, as well as the molecular mechanisms behind the epigenetic phenomenon that is genomic imprinting.

Creator: Elizabeth Au

References:
Barton, S. C., A. C. Ferguson-Smith, R. Fundele, and M.A. Surani, 1991 Influence of paternally imprinted genes on development. Development 113: 679-687.
Mann, J. R., and C. L. Stewart, 1991 Development of mouse androgenetic aggregation chimeras. Development 113: 1325-1333.
Paulsen, M., and A. C. Ferguson-Smith, 2001 DNA methylation in genomic imprinting, development, and disease. J. Pathol. 195: 97-110.
Surani, M.A., R. Kothary, N. D. Allen, P.B. Singh, R. Fundele, et al., 1990 Genome imprinting and development in the mouse. Dev. Suppl. 108: 89-98.
Thamban, T., V. Agarwaat, and S. Khosta, 2020 Role of genomic imprinting in mammalian development. J. Biosci. 45: 1-20.
Thomson, J. A., and D. Salter, 1988 The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes. Development 2: 1344-1351.

Genomic imprinting: It takes two to make a thing go right

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Epigenetics

Epigenetics

Геномный импринтинг | Как геномный импринтинг работает на молекулярном уровне?

Геномный импринтинг | Как геномный импринтинг работает на молекулярном уровне?

Epigenetics: Can we change our genes? - BBC World Service

Epigenetics: Can we change our genes? - BBC World Service

Тайны Х-хромосомы — Робин Болл

Тайны Х-хромосомы — Робин Болл

11E - Imprinting

11E - Imprinting

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Как распознать аутизм у ЖЕНЩИН и ДЕВОЧЕК (неочевидные признаки)

Как распознать аутизм у ЖЕНЩИН и ДЕВОЧЕК (неочевидные признаки)

X Inactivation and Epigenetics (2011) Etsuko Uno wehi.tv

X Inactivation and Epigenetics (2011) Etsuko Uno wehi.tv

What Is The Gene's Eye View of Evolution? Stated Clearly

What Is The Gene's Eye View of Evolution? Stated Clearly

Epigenetics and the influence of our genes | Courtney Griffins | TEDxOU

Epigenetics and the influence of our genes | Courtney Griffins | TEDxOU

8: Genomic Imprinting: USMLE Step 1 Pathology

8: Genomic Imprinting: USMLE Step 1 Pathology

Что такое эпигенетика? — Карлос Герреро-Босана

Что такое эпигенетика? — Карлос Герреро-Босана

Introduction to epigenetics - Learn.OmicsLogic.com

Introduction to epigenetics - Learn.OmicsLogic.com

Genomic Imprinting

Genomic Imprinting

Эпигенетика — возможность человека изменить то, что предопределено в ДНК | Моше Зиф | TEDxBratislava

Эпигенетика — возможность человека изменить то, что предопределено в ДНК | Моше Зиф | TEDxBratislava

Что такое мутации и каковы различные типы мутаций?

Что такое мутации и каковы различные типы мутаций?

DNA Methylation and Cancer - Garvan Institute

DNA Methylation and Cancer - Garvan Institute

Alleles and Genes

Alleles and Genes

Но что такое CRISPR-Cas9? Анимированное введение в редактирование генов. #some2

Но что такое CRISPR-Cas9? Анимированное введение в редактирование генов. #some2

Genomic imprinting

Genomic imprinting

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com