Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Mathematics of LLMs in Everyday Language

Автор: Turing

Загружено: 2025-07-07

Просмотров: 189126

Описание:

Explore science like never before - accessible, thrilling, and packed with awe-inspiring moments. Fuel your curiosity with 100s of free, curated STEM audio shows .
Download The Turing App on the Apple App Store, Google Play Store or listen at https://theturingapp.com/

Foundations of Thought: Inside the Mathematics of Large Language Models
⏱️Timestamps⏱️
00:00 Start
03:11 Claude Shannon and Information theory
03:59 ELIZA and LLM Precursors (e.g., AutoComplete)
05:43 Probability and N-Grams
09:45 Tokenization
12:34 Embeddings
16:20 Transformers
20:21 Positional Encoding
22:36 Learning Through Error
26:29 Entropy - Balancing Randomness and Determinism
29:36 Scaling
32:45 Preventing Overfitting
36:24 Memory and Context Window
40:02 Multi-Modality
48:14 Fine Tuning
52:05 Reinforcement Learning
55:28 Meta-Learning and Few-Shot Capabilities
59:08 Interpretability and Explainability
1:02:14 Future of LLMs

What if a machine could learn every word ever written—and then begin to predict, complete, and even create language that feels distinctly human?

This is a cinematic deep dive into the mathematics, mechanics, and meaning behind today’s most powerful artificial intelligence systems: large language models (LLMs). From the origins of probability theory and early statistical models to the transformers that now power tools like ChatGPT and Claude, this documentary explores how machines have come to understand and generate language with astonishing fluency.

This video unpacks how LLMs evolved from basic autocomplete functions to systems capable of writing essays, generating code, composing poetry, and holding coherent conversations. We begin with the foundational concepts of prediction and probability, tracing back to Claude Shannon’s information theory and the early era of n-gram models. These early techniques were limited by context—but they laid the groundwork for embedding words in mathematical space, giving rise to meaning in numbers.

The transformer architecture changed everything. Introduced in 2017, it enabled models to analyze language in full context using self-attention and positional encoding, revolutionizing machine understanding of sequence and relationships. As these models scaled to billions and even trillions of parameters, they began to show emergent capabilities—skills not directly programmed but arising from the sheer scale of training.

The video also covers critical innovations like gradient descent, backpropagation, and regularization techniques that allow these systems to learn efficiently. It explores how models balance creativity and coherence using entropy and temperature, and how memory and few-shot learning enable adaptability across tasks with minimal input.

Beyond the algorithms, we examine how we align AI with human values through reinforcement learning from human feedback (RLHF), and the role of interpretability in building trust.

Multimodality adds another layer, as models increasingly combine text, images, audio, and video into unified systems capable of reasoning across sensory inputs. With advancements in fine-tuning, transfer learning, and ethical safeguards, LLMs are evolving into flexible tools with the power to transform everything from medicine to education.

If you’ve ever wondered how AI really works, or what it means for our future, this is your invitation to understand the systems already changing the world.

#largelanguagemodels #tokenization #embeddings #TransformerArchitecture #AttentionMechanism #SelfAttention #PositionalEncoding #gradientdescent #explainableai

Mathematics of LLMs in Everyday Language

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Deep Dive into LLMs like ChatGPT

Deep Dive into LLMs like ChatGPT

The Voice Loop Episode 5: They Built an AI That Hears Disease in Your Voice

The Voice Loop Episode 5: They Built an AI That Hears Disease in Your Voice

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

THIS is why large language models can understand the world

THIS is why large language models can understand the world

Stanford CS230 | Autumn 2025 | Lecture 8: Agents, Prompts, and RAG

Stanford CS230 | Autumn 2025 | Lecture 8: Agents, Prompts, and RAG

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

The AI Math That Left Number Theorists Speechless

The AI Math That Left Number Theorists Speechless

Большинство разработчиков не понимают, как работают контекстные окна.

Большинство разработчиков не понимают, как работают контекстные окна.

The Elegant Math Behind Machine Learning

The Elegant Math Behind Machine Learning

Что такое встраивание слов?

Что такое встраивание слов?

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Don't learn AI Agents without Learning these Fundamentals

Don't learn AI Agents without Learning these Fundamentals

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Math's Fundamental Flaw

Math's Fundamental Flaw

Why Does Fire BURN? Feynman's Answer Will DESTROY Your Reality

Why Does Fire BURN? Feynman's Answer Will DESTROY Your Reality

The Limits of AI: Generative AI, NLP, AGI, & What’s Next?

The Limits of AI: Generative AI, NLP, AGI, & What’s Next?

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com