Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Big updates to mlflow 3.0

Автор: MLOps.community

Загружено: 2025-11-07

Просмотров: 2487

Описание:

// Abstract
Generative AI doesn’t need more hype—it needs accountability. Databricks’ Eric Peter and Corey Zumar share how MLflow 3.0 brings structure, monitoring, and intelligent agents to keep AI systems honest.

// Bio
Eric Peter
Product management leader and 2x founder with experience in enterprise products, data, and machine learning. Currently building tools for generative AI at Databricks.

Corey Zumar
Corey Zumar is a software engineer at Databricks, where he’s spent the last four years working on machine learning infrastructure and APIs for the machine learning lifecycle, including model management and production deployment. Corey is an active developer of MLflow. He holds a master’s degree in computer science from UC Berkeley.

Big updates to mlflow 3.0

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

MLflow 3.0: AI and MLOps on Databricks

MLflow 3.0: AI and MLOps on Databricks

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Streamlining DSPy Development: Track, Debug, and Deploy With MLflow

Streamlining DSPy Development: Track, Debug, and Deploy With MLflow

MLOps Explained - What It Is, Why You Need It and How It Works

MLOps Explained - What It Is, Why You Need It and How It Works

Getting Started with Mlflow: Prompt Optimization

Getting Started with Mlflow: Prompt Optimization

MLOps Essentials: Tools Every ML Engineer Should Know

MLOps Essentials: Tools Every ML Engineer Should Know

Краткий обзор новой версии n8n 2.0  🚀

Краткий обзор новой версии n8n 2.0 🚀

What If Every Customer's Experience Was Perfectly Orchestrated?

What If Every Customer's Experience Was Perfectly Orchestrated?

Satya Nadella – How Microsoft thinks about AGI

Satya Nadella – How Microsoft thinks about AGI

MLflow 3.0: The Future of AI Agents

MLflow 3.0: The Future of AI Agents

Complete Guide to MLOps | Machine Learning Essentials

Complete Guide to MLOps | Machine Learning Essentials

Workshop | Managing the Complete Machine Learning Lifecycle with MLflow: 1 of 3

Workshop | Managing the Complete Machine Learning Lifecycle with MLflow: 1 of 3

MLOps on Databricks: A How-To Guide

MLOps on Databricks: A How-To Guide

Best Practices for Building User-Facing AI Systems on Databricks

Best Practices for Building User-Facing AI Systems on Databricks

Comprehensive Guide to MLOps on Databricks

Comprehensive Guide to MLOps on Databricks

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

MLFlow: Краткое руководство пользователя

MLFlow: Краткое руководство пользователя

Building Production RAG Over Complex Documents

Building Production RAG Over Complex Documents

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

MCP vs API: Simplifying AI Agent Integration with External Data

MCP vs API: Simplifying AI Agent Integration with External Data

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]