Weil conjectures 1 Introduction
Автор: Richard E Borcherds
Загружено: 2020-10-08
Просмотров: 9681
This talk is the first of a series of talks on the Weil conejctures.
We recall properties of the Riemann zeta function, and describe how Artin used these to motivate the definition of the zeta function of a curve over a finite field. We then describe Weil's generalization of this to varieties of
higher dimension over finite fields, and conclude by stating the Weil conjectures about these zeta functions, including the analog of the Riemann hypothesis.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: