Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Sampling Methods | Stratified | Random | Solved Example | Data Mining

Автор: Sigma Solver

Загружено: 2025-10-12

Просмотров: 33

Описание:

In this tutorial, we explore Sampling, one of the most essential concepts in statistics, data science, and machine learning — forming the foundation for everything from surveys and experiments to model training and evaluation.

We begin by understanding what sampling is, why it’s needed, and where it’s applied — from large-scale data collection and randomized controlled trials to class balancing in machine learning datasets. Then, we dive into a practical theoretical problem that highlights two important sampling approaches:

1️⃣ Proportional Stratified Sampling — where we divide the population into groups (or strata) and sample a fixed number of elements from each group based on their size. We’ll derive how this ensures balanced representation, compute inclusion probabilities, and show why it often leads to lower variance and more stable estimates.

2️⃣ Simple Random Sampling (SRS) — where we draw all samples from the dataset as a whole, ignoring group structure. We’ll see how group counts now follow a multinomial distribution, making representation random, and compare its statistical behavior to the stratified method through intuitive reasoning and examples.

Along the way, we’ll derive the key mathematical expressions for inclusion probability, expected counts, and variance under both schemes, explaining why proportional stratification is often superior when groups differ significantly in size or variability.

We’ll then discuss extensions and modifications — such as Neyman allocation for variance minimization, oversampling rare classes for ML fairness, and stratified k-fold cross-validation — all of which stem from the same foundational idea of structured sampling.

Finally, we’ll look ahead to advanced sampling designs, including cluster sampling, probability proportional to size (PPS), and streaming stratified sampling, showing how these build on the core concepts introduced in this tutorial.

By the end of this session, you’ll not only understand the difference between proportional stratified and simple random sampling, but also gain deep insight into when and why to use each, and how sampling design directly affects accuracy, fairness, and representativeness in your data-driven projects.

📘 Looking for detailed notes, solved examples, and extended practice problems in computer science?
Join the Sigma Solver Learner Community here:
👉 https://quognitive.com/sigmasolver/co...

Chapters in the video:
0:00 Introduction
0:42 Problem Statement
1:45 Concept Introduction
2:40 Applications
4:50 Core Knobs
5:38 Comparing the Schemes
13:58 Example
16:15 Implementation
17:49 Inference
19:10 Modifications
20:44 Conclusion

If you are facing any issues do let me know in the comment section below, I am here to help ❤️
If you found this video useful then please consider subscribing to my channel 🙏

Background Music Credits (in order of use)
Outro Music Credit:
Spirit by Sappheiros:
"Spirit by Sappheiros" is under a Creative Commons ( cc-by ) license
Music promoted by BreakingCopyright: https://bit.ly/sappheiros-spirit

Sampling Methods | Stratified | Random | Solved Example | Data Mining

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Parity | Decision Tree Optimisation | OBDD | Feature Engineering

Parity | Decision Tree Optimisation | OBDD | Feature Engineering

Correlation Coefficients | Pearson | Jaccard | SMC and More

Correlation Coefficients | Pearson | Jaccard | SMC and More

FlashAttention Explained: The Secret to Faster & Longer AI Models

FlashAttention Explained: The Secret to Faster & Longer AI Models

VERİ MADENCİLİĞİ

VERİ MADENCİLİĞİ

Veri Madenciliği Data Mining Türkçe Dersler

Veri Madenciliği Data Mining Türkçe Dersler

CNN, ReLU, and Dropout | Solved Example | Convolution Neural Networks

CNN, ReLU, and Dropout | Solved Example | Convolution Neural Networks

Binnig Metotları (Mean,Median,Boundaries) | Veri Madenciliği(Data Mining)Eğitim Seti Ders 7

Binnig Metotları (Mean,Median,Boundaries) | Veri Madenciliği(Data Mining)Eğitim Seti Ders 7

Нормализация минимума и максимума | Z-оценка по среднему абсолютному отклонению | Десятичное масш...

Нормализация минимума и максимума | Z-оценка по среднему абсолютному отклонению | Десятичное масш...

Я в опасности

Я в опасности

Machine Learning

Machine Learning

Probability Density | Prey Predator Model | Solved Example

Probability Density | Prey Predator Model | Solved Example

Boxplot Nedir Nasıl Çizilir Outlier Bulmak |Veri Madenciliği(Data Mining)Eğitim Seti Ders 15

Boxplot Nedir Nasıl Çizilir Outlier Bulmak |Veri Madenciliği(Data Mining)Eğitim Seti Ders 15

Top 10 Technical Skills That Will Matter Most in 2026

Top 10 Technical Skills That Will Matter Most in 2026

Scan Conversion | Circle | Mid Point Method | Computer Graphics

Scan Conversion | Circle | Mid Point Method | Computer Graphics

39 OFIAR ŚMIERTELNYCH. TRAGEDIA NA TORACH W HISZPANII

39 OFIAR ŚMIERTELNYCH. TRAGEDIA NA TORACH W HISZPANII

Why Senior Roles Reject Your Agent Portfolio (Experienced)

Why Senior Roles Reject Your Agent Portfolio (Experienced)

Обратные элементы по модулю | Метод Евклида | Решенный пример | Криптография

Обратные элементы по модулю | Метод Евклида | Решенный пример | Криптография

Cosine | Correlation | Euclidean Measure - Solved Example

Cosine | Correlation | Euclidean Measure - Solved Example

НОД по евклидовой функции | Расширенная евклидова функция | Линейная комбинация | Модульная обрат...

НОД по евклидовой функции | Расширенная евклидова функция | Линейная комбинация | Модульная обрат...

Наборы «Первый и последующие» | Таблица анализа LL1 | Проектирование компилятора

Наборы «Первый и последующие» | Таблица анализа LL1 | Проектирование компилятора

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com