Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DO REASONING MODELS ACTUALLY SEARCH? [Prof. Subbarao Kambhampati]

Автор: Machine Learning Street Talk

Загружено: 2025-01-22

Просмотров: 38905

Описание:

Join Prof. Subbarao Kambhampati and host Tim Scarfe for a deep dive into OpenAI's O1 model and the future of AI reasoning systems.

How O1 likely uses reinforcement learning similar to AlphaGo, with hidden reasoning tokens that users pay for but never see
The evolution from traditional Large Language Models to more sophisticated reasoning systems
The concept of "fractal intelligence" in AI - where models work brilliantly sometimes but fail unpredictably
Why O1's improved performance comes with substantial computational costs
The ongoing debate between single-model approaches (OpenAI) vs hybrid systems (Google)
The critical distinction between AI as an intelligence amplifier vs autonomous decision-maker

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/
***

TOC:
1. *O1 Architecture and Reasoning Foundations*
[00:00:00] 1.1 Fractal Intelligence and Reasoning Model Limitations
[00:04:28] 1.2 LLM Evolution: From Simple Prompting to Advanced Reasoning
[00:14:28] 1.3 O1's Architecture and AlphaGo-like Reasoning Approach
[00:23:18] 1.4 Empirical Evaluation of O1's Planning Capabilities

2. *Monte Carlo Methods and Model Deep-Dive*
[00:29:30] 2.1 Monte Carlo Methods and MARCO-O1 Implementation
[00:31:30] 2.2 Reasoning vs. Retrieval in LLM Systems
[00:40:40] 2.3 Fractal Intelligence Capabilities and Limitations
[00:45:59] 2.4 Mechanistic Interpretability of Model Behavior
[00:51:41] 2.5 O1 Response Patterns and Performance Analysis

3. *System Design and Real-World Applications*
[00:59:30] 3.1 Evolution from LLMs to Language Reasoning Models
[01:06:48] 3.2 Cost-Efficiency Analysis: LLMs vs O1
[01:11:28] 3.3 Autonomous vs Human-in-the-Loop Systems
[01:16:01] 3.4 Program Generation and Fine-Tuning Approaches
[01:26:08] 3.5 Hybrid Architecture Implementation Strategies

Transcript: https://www.dropbox.com/scl/fi/d0ef4o...

REFS:
[00:02:00] Monty Python (1975)
Witch trial scene: flawed logical reasoning.
   • She's a witch!  

[00:04:00] Cade Metz (2024)
Microsoft–OpenAI partnership evolution and control dynamics.
https://www.nytimes.com/2024/10/17/te...

[00:07:25] Kojima et al. (2022)
Zero-shot chain-of-thought prompting ('Let's think step by step').
https://arxiv.org/pdf/2205.11916

[00:08:20] Subbarao / Stechly, K. et al. (2024)
Chain of Thoughtlessness? An Analysis of CoT in Planning (examines CoT prompts in classical planning tasks).
https://arxiv.org/abs/2405.04776

[00:12:50] DeepMind Research Team (2023)
Multi-bot game solving with external and internal planning.
https://deepmind.google/research/publ...

[00:15:10] Silver et al. (2016)
AlphaGo's Monte Carlo Tree Search and Q-learning.
https://www.nature.com/articles/natur...

[00:16:30] Kambhampati, S. et al. (2023)
Evaluates O1's planning in "Strawberry Fields" benchmarks.
https://arxiv.org/pdf/2410.02162

[00:29:30] Alibaba AIDC-AI Team (2023)
MARCO-O1: Chain-of-Thought + MCTS for improved reasoning.
https://arxiv.org/html/2411.14405

[00:31:30] Kambhampati, S. (2024)
Explores LLM "reasoning vs retrieval" debate.
https://arxiv.org/html/2403.04121v2

[00:37:35] Wei, J. et al. (2022)
Chain-of-thought prompting (introduces last-letter concatenation).
https://arxiv.org/pdf/2201.11903

[00:42:35] Barbero, F. et al. (2024)
Transformer attention and "information over-squashing."
https://arxiv.org/html/2406.04267v2

[00:46:05] Ruis, L. et al. (2023)
Influence functions to understand procedural knowledge in LLMs.
https://arxiv.org/html/2411.12580v1

[00:50:00] OpenAI (2023)
O1's reasoning capabilities vs persistent autoregressive tendencies.
https://arxiv.org/html/2410.01792v2

[00:56:35] The Surgeon Riddle (2014)
Gender bias puzzle testing model reasoning.
https://www.bu.edu/articles/2014/bu-r...

[01:14:00] Chollet, F. (2023)
ARC challenge for general intelligence.
https://arcprize.org/arc

[01:16:15] Greenblatt. (2024)
50% SoTA on ARC-AGI using GPT-4o and Python sampling.
https://redwoodresearch.substack.com/...

[01:16:55] Wen-Ding Li, Kevin Ellis et al. (2023)
Combining induction and transduction for ARC reasoning.
https://arxiv.org/abs/2411.02272

PROGRAMS WITH COMMON SENSE McCarthy (1959)
https://www-formal.stanford.edu/jmc/m... (holy grail of AI/advice)

[01:22:45] Kierkegaard, S. (1843)
"Life understood backwards, lived forwards" philosophical quote.
https://plato.stanford.edu/entries/ki...

DO REASONING MODELS ACTUALLY SEARCH? [Prof. Subbarao Kambhampati]

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Let's build GPT: from scratch, in code, spelled out.

Let's build GPT: from scratch, in code, spelled out.

[UKRYTA KAMERA] DODA I ZAKAZANE NAGRANIA Z SCHRONISKA. ROZMOWA Z WÓJTEM GMINY SOBOLEW

[UKRYTA KAMERA] DODA I ZAKAZANE NAGRANIA Z SCHRONISKA. ROZMOWA Z WÓJTEM GMINY SOBOLEW

Abstraction & Idealization: AI's Plato Problem [Mazviita Chirimuuta]

Abstraction & Idealization: AI's Plato Problem [Mazviita Chirimuuta]

Спецоперация Путина в Абу-Даби. Адам Кадыров — не преемник. Российский бизнес при смерти

Спецоперация Путина в Абу-Даби. Адам Кадыров — не преемник. Российский бизнес при смерти

Father of AI: AI Needs PHYSICS to EVOLVE | prof. Yann LeCun

Father of AI: AI Needs PHYSICS to EVOLVE | prof. Yann LeCun

Program Synthesis and Non-Monotonic Reasoning - Kedar Namjoshi

Program Synthesis and Non-Monotonic Reasoning - Kedar Namjoshi

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Causal Mechanistic Interpretability (Stanford lecture 1) - Atticus Geiger

Causal Mechanistic Interpretability (Stanford lecture 1) - Atticus Geiger

How Do AI Models Actually Think? [Dr. Laura Ruis]

How Do AI Models Actually Think? [Dr. Laura Ruis]

BREAKING NEWS: Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

BREAKING NEWS: Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Do you think that ChatGPT can reason?

Do you think that ChatGPT can reason?

Как ИИ научился думать

Как ИИ научился думать

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

The Mathematical Foundations of Intelligence [Professor Yi Ma]

The Mathematical Foundations of Intelligence [Professor Yi Ma]

Tensor Logic

Tensor Logic "Unifies" AI Paradigms [Pedro Domingos]

Ilya Sutskever:

Ilya Sutskever: "Sequence to sequence learning with neural networks: what a decade"

How DeepSeek Rewrote the Transformer [MLA]

How DeepSeek Rewrote the Transformer [MLA]

Янн Лекун «Математические препятствия на пути к ИИ человеческого уровня»

Янн Лекун «Математические препятствия на пути к ИИ человеческого уровня»

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com