Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DO REASONING MODELS ACTUALLY SEARCH? [Prof. Subbarao Kambhampati]

Автор: Machine Learning Street Talk

Загружено: 2025-01-22

Просмотров: 38722

Описание:

Join Prof. Subbarao Kambhampati and host Tim Scarfe for a deep dive into OpenAI's O1 model and the future of AI reasoning systems.

How O1 likely uses reinforcement learning similar to AlphaGo, with hidden reasoning tokens that users pay for but never see
The evolution from traditional Large Language Models to more sophisticated reasoning systems
The concept of "fractal intelligence" in AI - where models work brilliantly sometimes but fail unpredictably
Why O1's improved performance comes with substantial computational costs
The ongoing debate between single-model approaches (OpenAI) vs hybrid systems (Google)
The critical distinction between AI as an intelligence amplifier vs autonomous decision-maker

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/
***

TOC:
1. *O1 Architecture and Reasoning Foundations*
[00:00:00] 1.1 Fractal Intelligence and Reasoning Model Limitations
[00:04:28] 1.2 LLM Evolution: From Simple Prompting to Advanced Reasoning
[00:14:28] 1.3 O1's Architecture and AlphaGo-like Reasoning Approach
[00:23:18] 1.4 Empirical Evaluation of O1's Planning Capabilities

2. *Monte Carlo Methods and Model Deep-Dive*
[00:29:30] 2.1 Monte Carlo Methods and MARCO-O1 Implementation
[00:31:30] 2.2 Reasoning vs. Retrieval in LLM Systems
[00:40:40] 2.3 Fractal Intelligence Capabilities and Limitations
[00:45:59] 2.4 Mechanistic Interpretability of Model Behavior
[00:51:41] 2.5 O1 Response Patterns and Performance Analysis

3. *System Design and Real-World Applications*
[00:59:30] 3.1 Evolution from LLMs to Language Reasoning Models
[01:06:48] 3.2 Cost-Efficiency Analysis: LLMs vs O1
[01:11:28] 3.3 Autonomous vs Human-in-the-Loop Systems
[01:16:01] 3.4 Program Generation and Fine-Tuning Approaches
[01:26:08] 3.5 Hybrid Architecture Implementation Strategies

Transcript: https://www.dropbox.com/scl/fi/d0ef4o...

REFS:
[00:02:00] Monty Python (1975)
Witch trial scene: flawed logical reasoning.
   • She's a witch!  

[00:04:00] Cade Metz (2024)
Microsoft–OpenAI partnership evolution and control dynamics.
https://www.nytimes.com/2024/10/17/te...

[00:07:25] Kojima et al. (2022)
Zero-shot chain-of-thought prompting ('Let's think step by step').
https://arxiv.org/pdf/2205.11916

[00:08:20] Subbarao / Stechly, K. et al. (2024)
Chain of Thoughtlessness? An Analysis of CoT in Planning (examines CoT prompts in classical planning tasks).
https://arxiv.org/abs/2405.04776

[00:12:50] DeepMind Research Team (2023)
Multi-bot game solving with external and internal planning.
https://deepmind.google/research/publ...

[00:15:10] Silver et al. (2016)
AlphaGo's Monte Carlo Tree Search and Q-learning.
https://www.nature.com/articles/natur...

[00:16:30] Kambhampati, S. et al. (2023)
Evaluates O1's planning in "Strawberry Fields" benchmarks.
https://arxiv.org/pdf/2410.02162

[00:29:30] Alibaba AIDC-AI Team (2023)
MARCO-O1: Chain-of-Thought + MCTS for improved reasoning.
https://arxiv.org/html/2411.14405

[00:31:30] Kambhampati, S. (2024)
Explores LLM "reasoning vs retrieval" debate.
https://arxiv.org/html/2403.04121v2

[00:37:35] Wei, J. et al. (2022)
Chain-of-thought prompting (introduces last-letter concatenation).
https://arxiv.org/pdf/2201.11903

[00:42:35] Barbero, F. et al. (2024)
Transformer attention and "information over-squashing."
https://arxiv.org/html/2406.04267v2

[00:46:05] Ruis, L. et al. (2023)
Influence functions to understand procedural knowledge in LLMs.
https://arxiv.org/html/2411.12580v1

[00:50:00] OpenAI (2023)
O1's reasoning capabilities vs persistent autoregressive tendencies.
https://arxiv.org/html/2410.01792v2

[00:56:35] The Surgeon Riddle (2014)
Gender bias puzzle testing model reasoning.
https://www.bu.edu/articles/2014/bu-r...

[01:14:00] Chollet, F. (2023)
ARC challenge for general intelligence.
https://arcprize.org/arc

[01:16:15] Greenblatt. (2024)
50% SoTA on ARC-AGI using GPT-4o and Python sampling.
https://redwoodresearch.substack.com/...

[01:16:55] Wen-Ding Li, Kevin Ellis et al. (2023)
Combining induction and transduction for ARC reasoning.
https://arxiv.org/abs/2411.02272

PROGRAMS WITH COMMON SENSE McCarthy (1959)
https://www-formal.stanford.edu/jmc/m... (holy grail of AI/advice)

[01:22:45] Kierkegaard, S. (1843)
"Life understood backwards, lived forwards" philosophical quote.
https://plato.stanford.edu/entries/ki...

DO REASONING MODELS ACTUALLY SEARCH? [Prof. Subbarao Kambhampati]

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

TUSK, BOGUCKI, MENTZEN. AFERA W SEJMIE WOKÓŁ KRYPTOWALUT I NAJLEPSZE FRAGMENTY

TUSK, BOGUCKI, MENTZEN. AFERA W SEJMIE WOKÓŁ KRYPTOWALUT I NAJLEPSZE FRAGMENTY

DeepSeek ВЕРНУЛСЯ и ещё больше новостей об ИИ, которые вы можете использовать

DeepSeek ВЕРНУЛСЯ и ещё больше новостей об ИИ, которые вы можете использовать

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Psychology of People Who Are Open-Minded

The Psychology of People Who Are Open-Minded

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Fireside Chat IWAI 2025: Profs. Gary Marcus & Karl Friston (moderated by Tim Verbelen)

Fireside Chat IWAI 2025: Profs. Gary Marcus & Karl Friston (moderated by Tim Verbelen)

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Development Talks: A Computational View of Life and Intelligence

Development Talks: A Computational View of Life and Intelligence

Мы создали калькуляторы, потому что мы ГЛУПЫЕ! [Профессор Дэвид Кракауэр]

Мы создали калькуляторы, потому что мы ГЛУПЫЕ! [Профессор Дэвид Кракауэр]

François Chollet on OpenAI o-models and ARC

François Chollet on OpenAI o-models and ARC

Can LLMs reason? | Yann LeCun and Lex Fridman

Can LLMs reason? | Yann LeCun and Lex Fridman

Can AI Improve Itself? [Chris Lu, Robert Lange, Cong Lu]

Can AI Improve Itself? [Chris Lu, Robert Lange, Cong Lu]

Янн Лекун «Математические препятствия на пути к ИИ человеческого уровня»

Янн Лекун «Математические препятствия на пути к ИИ человеческого уровня»

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Sam Altman goes NUCLEAR (CODE RED)

Sam Altman goes NUCLEAR (CODE RED)

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]