Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How people came up with the natural logarithm and the exponential function

Автор: Daniel Rubin

Загружено: 2021-06-14

Просмотров: 435173

Описание:

I discuss the history of the introduction of the natural logarithm and exponential functions, answering the question of how the logarithm was first discovered and how it's properties were derived, and also why it appeared when it did. I consider several other areas of inquiry that could have led to a theory of exponentials and logarithms, including: compound interest, population/economic/technological growth, physics, gambling, navigation, and pure mathematics. Then I explain the work of John Napier in constructing calculation tables for astronomers that introduced the natural log in 1614.

0:00 Intro
1:05 History of compound interest
6:55 Why exponential growth was not a recognized feature of life in the past
8:10 Exponential functions in physics
10:58 Exp and log in gambling
14:34 Navigation, meridional parts, and the integral of the secant
18:43 Calculation tables and Napier's introduction of ln(x)

This is episode 6 in a series called Tricky Parts of Calculus, a series about the subtle and difficult parts of calculus that are usually glossed-over in a calculus class. Tricky Parts of Calculus playlist:    • Tricky Parts of Calculus  

Also check out my channel for general advice and opinions about math, as well as the Daniel Rubin Show podcast for interesting conversations about math and other topics:    / @danielrubin1  

For a discussion of how e^x shows up in analysis of the Martingale betting strategy, see this great video from Numberphile:    • Gambling with the Martingale Strategy - Nu...  


References:
Hald, A History of Probability and Statistics and Their Applications before 1750 https://amzn.to/2ThUmip
Havil, John Napier: Life, Logarithms, and Legacy https://amzn.to/2UpMjR7
Newton, Principia https://amzn.to/3ikO5Ln
Toeplitz, The Calculus: A Genetic Approach https://amzn.to/3kvNwRE
Williams, From Sails to Satellites: The Origin and Development of Navigational Science https://amzn.to/3hLHY3w
(I get a small commission from purchases made from these links.)
http://sumerianshakespeare.com/70701/...

How people came up with the natural logarithm and the exponential function

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Hyperbolic Trig Functions THE HARD WAY

Hyperbolic Trig Functions THE HARD WAY

How Imaginary Numbers Were Invented

How Imaginary Numbers Were Invented

5 Methods to Introduce the Exponential Function and Logarithm WITH PROOFS

5 Methods to Introduce the Exponential Function and Logarithm WITH PROOFS

What is e and ln(x)? (Euler's Number and The Natural Logarithm)

What is e and ln(x)? (Euler's Number and The Natural Logarithm)

История натурального логарифма. Как он был открыт?

История натурального логарифма. Как он был открыт?

Гипотеза Римана, объяснение

Гипотеза Римана, объяснение

What's so special about Euler's number e? | Chapter 5, Essence of calculus

What's so special about Euler's number e? | Chapter 5, Essence of calculus

Вложенные квадратные корни i.

Вложенные квадратные корни i.

YOU CAN'T USE EULER'S IDENTITY TO PROVE THE ANGLE SUM IDENTITIES! | Tricky Parts of Calculus, Ep. 4

YOU CAN'T USE EULER'S IDENTITY TO PROVE THE ANGLE SUM IDENTITIES! | Tricky Parts of Calculus, Ep. 4

Натуральный логарифм — что он на самом деле означает

Натуральный логарифм — что он на самом деле означает

Is The Sum Of All Positive Numbers Really -1/12?

Is The Sum Of All Positive Numbers Really -1/12?

Почему они не преподают простые визуальные логарифмы (и гиперболическую тригонометрию)?

Почему они не преподают простые визуальные логарифмы (и гиперболическую тригонометрию)?

The Discovery That Transformed Pi

The Discovery That Transformed Pi

The Invention That Saved Science

The Invention That Saved Science

Russell's Paradox - a simple explanation of a profound problem

Russell's Paradox - a simple explanation of a profound problem

e (Euler's Number) - Numberphile

e (Euler's Number) - Numberphile

Olympiad level counting  (Generating functions)

Olympiad level counting (Generating functions)

The Most Useful Curve in Mathematics [Logarithms]

The Most Useful Curve in Mathematics [Logarithms]

Why is the derivative of e^x equal to e^x?

Why is the derivative of e^x equal to e^x?

Константа Капрекара

Константа Капрекара

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com