Laplace Transform of f(t) = (cos(3t) - 1) / t | | Integration Property (Division by t)
Автор: Math Infinitum
Загружено: 2025-12-24
Просмотров: 49
#laplacetransform #laplacetransformation #maths #manim #education #visualization #calculus #differentialequations #mathematics #math #engineeringmath #engineeringmathematics #laplace #transform
#integration #property #division #engineering #signal #processing #solved
#examples #logarithmicfunction #functions #improperintegrals #improper
In this video, we explore the Integration Property (Division by t) of the Laplace Transform.
We start by stating the theorem:
L{f(t)/t} = ∫ F(σ) dσ from p to ∞.
Then, we solve a specific example step-by-step:
Find the Laplace transform of f(t) = (cos(3t) - 1) / t.
Timeline:
0:00 - Theorem: Integration Property of Laplace Transform
0:35 - Example Setup: L{(cos(3t)-1)/t}
2:45 - Visualization: Time Domain f(t) vs s-Domain F(p)
The final result is shown to be F(p) = ln(p / sqrt(p² + 9)).
We conclude with a graphical comparison showing how the damped oscillation in the time domain corresponds to the logarithmic decay in the s-domain.
• Theorem: Every Convergent Sequence is Boun...
• Solving Differential Equation xy\,dx + (x+...
• Does it Converge or Diverge? Integral of 1...
• Integral of 1/x^2: Power Rule with Negativ...
• Complex Analysis: Finding the Laurent Seri...
• Metric Spaces: Definition, Axioms, and Exa...
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: