Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Data Mining | Lecture 9: Classification -1

Автор: eLearning Centre - IUG - Video Lectures

Загружено: 2020-03-01

Просмотров: 12685

Описание:

Faculty of Information Technology – Islamic University Gaza

Data Mining
SDEV 3304
Course Syllabus

General Information
• Semester: 2
Semester 2020.
• Department: Department of Software Engineering.
• Instructor: Dr. Iyad Husni Alshami,
• phone: 00970 8 2860700 Ext:2960
• email: eshami@iugaza.edu.ps
• office hours: Saturday – Wednesday 11:00 – 13:00
• office location: I305
• Credits: 3Hrs.
• Meeting time and locations:
• 201: ST 8:00 – 9:30, I101
• 101: ST 9:30 – 11:00, I116

Course’s Description
This course has been designed to give students an introduction to data mining and hands on experience
with all phases of the data mining process using real data and modern tools. It covers many topics such as data
formats, and cleaning; make prediction using supervised and unsupervised learning using Python and other tools,
and sound evaluation methods; and data/knowledge visualization.
Course’s Objectives
This course is designed to achieve a number of goals for each student such as:
• Providing the fundamental understanding of data mining in order to extract hidden knowledge.
• Exploring the different data mining tasks to extract knowledge:
o Classification,
o Clustering,
o Association Rules extraction, and
o Outlier detection.
• Practicing the data mining project phases
• Presenting the data in the early stage of data mining projects as well as the extracted knowledge.
• Provide the students the latest hot topics in data mining field.
• Strengthen the team work
Course’s Outcome
By the end of this course the students should be able to:
• Identify the meaning of data mining, describe the suitable data for data mining projects, list/identify at
least five different data mining tasks and evaluate the extracted knowledge for each task.
• Collect and prepare data set suitably for data mining projects.
• Use machine learning techniques to perform the different data mining tasks.
• Analysis and build data mining projects individually or as a team member/leader as well .
• Adopt the ethics of profession with the sensitive personal data

Text book & References
• Text Book: “Data Mining: Concepts and Techniques”, 2
edition by Jiawei Han and Micheline
Kamber, Morgan Kaufmann ©2006.


• Additional Books:
• “Data Mining – Practical Machine Learning Tools and Techniques”, 2
edition by Ian H. Witten
and Eibe Frank, Elsevier © 2005.

Course’s Outline “topics that will be covered”

Teaching methods
• Lectures,
• Discussion groups,
• Team work,
• Using Videos and Presentations
Evaluation criteria “Grades”
• 10% Quizzes & Assignments,
• 10% Participating in Course’s Activities
• 20% Midterm Exam
• 20% Final Project
• 40% Final Exam.
Course’s Tools
• PyCharm – Python 3.6
• Rapidminer Studio

Course’s Rules
• The course contents and grading can be changed as necessary.
• Missing more than 25% of lectures will provide you “W”.
• There is no predetermined schedule for quizzes.
• No excuses for missing the quizzes or the assignments.

يمكنكم متابعة كافة المحاضرات المصورة عبر
http://lectures.iugaza.edu.ps
#محاضرات #جامعية #lectures **
كافة الحقوق محفوظة لصالح الجامعة الإسلامية بغزة | https://www.iugaza.edu.ps

Data Mining | Lecture 9: Classification -1

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Data Mining | Lecture 10 : Classification- 2

Data Mining | Lecture 10 : Classification- 2

Datamining | Lecture 12: Classification- 4

Datamining | Lecture 12: Classification- 4

Data Mining : Introduction

Data Mining : Introduction

كلية تكنولوجيا المعلومات | تنقيب البيانات Data Mining

كلية تكنولوجيا المعلومات | تنقيب البيانات Data Mining

M1 | Data Mining

M1 | Data Mining

Lecture 1: Introduction to Data Mining

Lecture 1: Introduction to Data Mining

Data Mining | Lecture 3: Introduction to Data Mining III

Data Mining | Lecture 3: Introduction to Data Mining III

نظم قواعد المعرفة -  Knowledge-based systems

نظم قواعد المعرفة - Knowledge-based systems

Introduction Data-Mining (fouille de données)

Introduction Data-Mining (fouille de données)

120 МИЛЛИАРДОВ: КТО и Зачем создал БИТКОИН? Тайна Сатоши Накамото

120 МИЛЛИАРДОВ: КТО и Зачем создал БИТКОИН? Тайна Сатоши Накамото

Data Mining: Lecture no. Five - Classification: Basic Concepts and Techniques

Data Mining: Lecture no. Five - Classification: Basic Concepts and Techniques

What is classification in Machine Learning | Binary and Multi-class classification

What is classification in Machine Learning | Binary and Multi-class classification

Lecture 2: Data Mining

Lecture 2: Data Mining

ВСЕ накопители ДАННЫХ: объясняю за 8 минут

ВСЕ накопители ДАННЫХ: объясняю за 8 минут

Data Mining with Python | Data Mining For Beginners | What is Data Mining | Great Learning

Data Mining with Python | Data Mining For Beginners | What is Data Mining | Great Learning

How to find Entropy Information Gain | Gini Index Splitting Attribute Decision Tree by Mahesh Huddar

How to find Entropy Information Gain | Gini Index Splitting Attribute Decision Tree by Mahesh Huddar

Четкое объяснение классификации дерева решений!

Четкое объяснение классификации дерева решений!

Data warehouse and datamining Chapter 1

Data warehouse and datamining Chapter 1

Data Mining | Lecture 6: Data Understanding and Preparation - 6

Data Mining | Lecture 6: Data Understanding and Preparation - 6

Classification Definition and  Algorithms: Data Mining

Classification Definition and Algorithms: Data Mining

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com