Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Christian Knoth - Introduction to Deep Learning in R for analysis of UAV-based remote sensing data

Автор: OpenGeoHub Foundation Official Channel

Загружено: 2020-09-16

Просмотров: 4569

Описание:

Summary: The aim of this tutorial is to develop a basic understanding of the key practical steps involved in creating and applying a convolutional neural network (CNN) for image analysis – and how to do that in R.
These steps are:
Building your model
Preparing your data
Training your model
Predicting with your model
Besides the basic workflow, we will discuss two strategies for tackling small data problems, which is specifically important when working with UAV-based data: data augmentation and transfer learning.
In addition, we will look at aspects that are important for many remote sensing applications of CNNs: we´ll develop a model for pixel-by-pixel classification (instead of image classification) using an architecture called “U-net”. We will also address the practical question of how to turn a remote sensing image into something that can be processed by our CNN, and how to reassemble the predictions back to a map.
Finally, we will briefly touch on the topic of inspecting what a trained model has learned.

Installation instructions & material: https://github.com/DaChro/ogh_summer_...

References:
Chollet, F., and J.J. Allaire. 2018. Deep Learning with R. Manning Publications.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted Intervention – Miccai 2015

How to cite this video:
http://doi.org/10.5446/49550

Christian Knoth - Introduction to Deep Learning in R for analysis of UAV-based remote sensing data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Monitoring Crops using Drones, Hyperspectral and Machine Learning

Monitoring Crops using Drones, Hyperspectral and Machine Learning

Fridays Hands-On Workshop Series 0.3:

Fridays Hands-On Workshop Series 0.3: "UAV pipeline for image and data analysis using R tools"

Deep Learning for Remote Sensing images with R language

Deep Learning for Remote Sensing images with R language

17. Machine Learning for Remote Sensing Data Analysis

17. Machine Learning for Remote Sensing Data Analysis

Object-based Image classification in QGIS || OBIA !! || A complete Tutorial

Object-based Image classification in QGIS || OBIA !! || A complete Tutorial

Remote sensing analysis using R || Remote sensing Analysis using R programming language beginners

Remote sensing analysis using R || Remote sensing Analysis using R programming language beginners

Advanced Machine Learning for Remote Sensing: Neural Networks

Advanced Machine Learning for Remote Sensing: Neural Networks

Paula Moraga: Spatial modeling and interactive visualization with the R-INLA package

Paula Moraga: Spatial modeling and interactive visualization with the R-INLA package

Советский способ увеличить количество отжиманий (навсегда)

Советский способ увеличить количество отжиманий (навсегда)

Above Ground Biomass Prediction using Deep Learning Regression with Earth Engine and Tensorflow

Above Ground Biomass Prediction using Deep Learning Regression with Earth Engine and Tensorflow

R you Ready to Python?  An Introduction to Working with Land Remote Sensing Data in R and Python

R you Ready to Python? An Introduction to Working with Land Remote Sensing Data in R and Python

DataPhilly Jan 2021: Satellite Imagery Analysis with Python

DataPhilly Jan 2021: Satellite Imagery Analysis with Python

Amazon Rainforest Satellite Image Classification using Convolutional Neural Networks

Amazon Rainforest Satellite Image Classification using Convolutional Neural Networks

Deep Learning with R | 01 | Regression as a first step in deep learning

Deep Learning with R | 01 | Regression as a first step in deep learning

В чем разница между матрицами и тензорами?

В чем разница между матрицами и тензорами?

Hanna Meyer:

Hanna Meyer: "Machine-learning based modelling of spatial and spatio-temporal data"

Машинное обучение в R: построение модели классификации

Машинное обучение в R: построение модели классификации

Deep Neural Networks  with TensorFlow & Keras in R | Numeric Response Variable

Deep Neural Networks with TensorFlow & Keras in R | Numeric Response Variable

Measuring Impact with Remotely Sensed Imagery and Machine Learning

Measuring Impact with Remotely Sensed Imagery and Machine Learning

Deep learning for remote sensing image analysis: applications, methods and perspectives

Deep learning for remote sensing image analysis: applications, methods and perspectives

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com