Proof: Limit of a Function is Unique | Real Analysis
Автор: Wrath of Math
Загружено: 2023-06-21
Просмотров: 10370
Support the production of this course by joining Wrath of Math to access all my real analysis videos plus the lecture notes at the premium tier!
/ @wrathofmath
🛍 Get the coolest math clothes in the world! https://mathshion.com/
Real Analysis course: • Real Analysis
Real Analysis exercises: • Real Analysis Exercises
Get the textbook! https://amzn.to/45kcMjq
We prove functional limits are unique using the epsilon delta definition of the limit of a function at a point. Precisely, we prove that if f(x) is a function from A to R, x is a limit point of A, the limit of f(x) as x approaches c is L1 and the limit of f(x) as x approaches c is L2, then L1=L2 - that is, the limits cannot be distinct. #realanalysis
Epsilon Delta Definition of the Limit of a Function: • Epsilon-Delta Definition of Functional Lim...
★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits: / wrathofmathlessons
◆ Donate on PayPal: https://www.paypal.me/wrathofmath
Follow Wrath of Math on...
● Instagram: / wrathofmathedu
● Facebook: / wrathofmath
● Twitter: / wrathofmathedu
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: