Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Near-Zero and Negative Thermal Conductivity in Nanostructures

Автор: AI Labs: Nanotechnology

Загружено: 2025-11-29

Просмотров: 83

Описание:

Near-zero and negative thermal conductivity in nanostructures challenges the foundations of classical thermodynamics. Learn how phonon scattering, quantum effects, and engineered metamaterials allow scientists to control — and even reverse — the flow of heat at the nanoscale. This video explores how heat behaves in ways that look almost paradoxical when you shrink materials down to the nanoscale. In bulk copper or silicon, heat flow is boringly predictable: it travels from hot to cold, with a well-defined positive thermal conductivity that Fourier’s law describes very well. But once you carve materials into nanowires, superlattices, or phononic crystals, the usual assumptions break down. Heat is no longer a smooth diffusive flow, but a collective dance of quantized vibrations (phonons) that scatter off interfaces, pores, and patterns. Under ultrafast, nanoscale conditions, heat waves can overshoot, oscillate, and even briefly appear to run “uphill” — creating the illusion of near-zero or even negative thermal conductivity without ever violating thermodynamics. From there, the lecture connects this strange physics to real nanostructures and devices. You see how superlattices and phononic crystals suppress heat transport to glass-like levels, how asymmetric nanogeometries act as thermal diodes that prefer one direction of heat flow, and how engineered “thermal metamaterials” can cloak or redirect heat almost like lenses for temperature. The video also shows why these effects are so important for thermoelectrics, where low thermal conductivity means better waste-heat harvesting, and points to frontier ideas like topological phonon transport and thermal analogues of the quantum Hall effect as the next frontier in controlling heat as precisely as we already control electrons and light.

What this video covers
Why classical Fourier heat conduction fails at nanometer scales
How shrinking copper and silicon to nanowires massively reduces their ability to conduct heat
The role of interfaces and superlattices in scattering phonons and throttling heat flow
Phononic crystals that create “forbidden bands” for vibrations and push conductivity toward near-zero
Why simple, instantaneous heat-flow models break down and must be replaced by delayed, wave-like descriptions
How ultrafast experiments observe brief, transient heat flow that appears to run from cold to hot
Experimental evidence from silicon nanowires and pump–probe measurements of non-Fourier behavior
Simulation tools (molecular dynamics, Boltzmann-based models, Green’s functions) for predicting nanoscale heat transport
Quantum effects at low temperature and why heat conduction can scale roughly with the cube of temperature
Thermal diodes and anisotropic materials that conduct heat far better in one direction than another
Why apparent negative conductivity does not violate the second law of thermodynamics
Engineering strategies — multilayers, pores, and alloying — to drive thermal conductivity toward zero
How ultralow thermal conductivity boosts performance in thermoelectric energy harvesters
Thermal metamaterials for cloaking, guiding, and focusing heat in space
Emerging directions: topological phononics, quantum Hall–like behavior for heat, and hyperbolic thermal media

Timestamps:
00:00 — Intro: near-zero and apparently negative thermal conductivity
00:31 — Classical Fourier conduction and its limits
01:01 — Bulk vs nanoscale thermal behavior in copper and silicon
01:32 — Interface scattering and superlattice suppression of heat
02:05 — Phononic crystals and vibrational band gaps
02:36 — Breakdown of standard Fourier models and delayed heat flow
03:09 — Transient reverse heat flow on ultrafast timescales
03:45 — Experimental nanowire measurements and glass-like conductivities
04:15 — Modeling tools: molecular dynamics, Boltzmann, Green’s function methods
05:00 — Quantum heat transport and low-temperature behavior
05:40 — Thermal diodes and extreme anisotropy in layered materials
06:31 — Why negative-looking conductivity does not break thermodynamics
07:00 — Design strategies for near-zero thermal conductivity
08:00 — Impact on thermoelectric efficiency and ZT improvement
09:00 — Thermal metamaterials, cloaking, and heat steering
10:00 — Frontier research: topological phonon transport and thermal Hall analogues

#PhononTransport #NonFourierHeatFlow #PhononicCrystals #ThermalMetamaterials #TopologicalPhononics #NanoscaleHeat

Near-Zero and Negative Thermal Conductivity in Nanostructures

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Something Weird Happens When E=−mc²

Something Weird Happens When E=−mc²

You’re Steeping Your Tea Too Long

You’re Steeping Your Tea Too Long

Understanding Conduction and the Heat Equation

Understanding Conduction and the Heat Equation

Математики открывают странную новую бесконечность

Математики открывают странную новую бесконечность

Как Перельман доказал гипотезу Пуанкаре? // 900 секунд

Как Перельман доказал гипотезу Пуанкаре? // 900 секунд

Вы не сошли с ума. Насекомые исчезают.

Вы не сошли с ума. Насекомые исчезают.

Механизмы, которые должен знать КАЖДЫЙ инженер-механик

Механизмы, которые должен знать КАЖДЫЙ инженер-механик

What is the Second Law of Thermodynamics?

What is the Second Law of Thermodynamics?

Почему все смазывают УШМ неправильно?

Почему все смазывают УШМ неправильно?

Шум сразу исчез после этого упражнения. Слух улучшился как никогда не слышал

Шум сразу исчез после этого упражнения. Слух улучшился как никогда не слышал

Quantization of Energy Part 1: Blackbody Radiation and the Ultraviolet Catastrophe

Quantization of Energy Part 1: Blackbody Radiation and the Ultraviolet Catastrophe

История фантастики: Антиутопии, в которых мы уже живем / Уроки истории / МИНАЕВ

История фантастики: Антиутопии, в которых мы уже живем / Уроки истории / МИНАЕВ

Deriving the Heat Equation: A Parabolic Partial Differential Equation for Heat Energy Conservation

Deriving the Heat Equation: A Parabolic Partial Differential Equation for Heat Energy Conservation

Heat Transfer: Crash Course Engineering #14

Heat Transfer: Crash Course Engineering #14

Как электростатические двигатели нарушают все правила

Как электростатические двигатели нарушают все правила

Что Будет, Если СПЛАВИТЬ ВСЕ МЕТАЛЛЫ Вместе?

Что Будет, Если СПЛАВИТЬ ВСЕ МЕТАЛЛЫ Вместе?

How We Built The ISS

How We Built The ISS

Heat Transfer - Conduction, Convection, and Radiation

Heat Transfer - Conduction, Convection, and Radiation

Oxford Calculus: Heat Equation Derivation

Oxford Calculus: Heat Equation Derivation

Как я делал бюджетный электроэрозионный станок

Как я делал бюджетный электроэрозионный станок

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]