Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Problem of Traffic: A Mathematical Modeling Journey

Автор: Dr. Trefor Bazett

Загружено: 2022-08-15

Просмотров: 116126

Описание:

How can we mathematically model traffic? Specifically we will study the problem of a single lane of cars and the perturbation from equilibrium that occurs when one car brakes, and that braking effect travels down the line of cars, amplifying as it goes along, due to the delayed reaction time of the drivers. The ultimate phenomena we would like to predict is that stop-and-go behaviour where cars don't just travel at a constant speed in rush hour, but alternate between braking and accelerating. However, when building this model our inputs are very microscopic considerations about how an individual car brakes or accelerates based on the following distance and relative velocity of the car ahead of it.

This video also aims to be an introduction to broad themes in mathematical modelling of real world problems, where we define a problem, choose the inputs to the system we will consider, make assumptions, build the model, and finally assess the model. Finally, the real piece of mathematics we are going to get out of this are called differential-delay equations, and I'll show you a bit about how to solve such equations at the end.

This video is part of the second iteration of the Summer of Math Exposition, hosted by ‪@3blue1brown‬ and ‪@LeiosLabs‬ . There are so many great videos in this in this exposition so definitely check them out by using the hashtag #SoME2.

0:00 The Challenge of Traffic
0:28 #SoME2
0:53 The Modelling Process
1:27 Defining the Problem
2:04 Choosing Which Variables to Consider
4:03 Making Assumptions
5:46 Building the Microscopic Model for Each Car
9:56 Macroscopic Equilibrium
10:34 The Relationship between Density and Velocity
16:23 Maximizing Flux and the Optimal Oensity
20:33 Modelling a Sequence of Cars
24:07 Modelling the First Car
26:05 Full Model: A Differential Delay System
27:06 Assessing the Model Graphically
29:33 Assessing the Model Qualitatively
31:45 Solving Differential Delay Systems

Check out my MATH MERCH line in collaboration with Beautiful Equations
►

COURSE PLAYLISTS:
►DISCRETE MATH:    • Discrete Math (Full Course: Sets, Logic, P...  
►LINEAR ALGEBRA:    • Linear Algebra (Full Course)  
►CALCULUS I:    • Calculus I (Limits, Derivative, Integrals)...  
► CALCULUS II:    • Calculus II (Integration Methods, Series, ...  
►MULTIVARIABLE CALCULUS (Calc III):    • Calculus III: Multivariable Calculus (Vect...  
►VECTOR CALCULUS (Calc IV)    • Calculus IV: Vector Calculus (Line Integra...  
►DIFFERENTIAL EQUATIONS:    • Ordinary Differential Equations (ODEs)  
►LAPLACE TRANSFORM:    • Laplace Transforms and Solving ODEs  
►GAME THEORY:    • Game Theory  

OTHER PLAYLISTS:
► Learning Math Series
   • 5 Tips To Make Math Practice Problems Actu...  
►Cool Math Series:
   • Cool Math Series  

BECOME A MEMBER:
►Join:    / @drtrefor  

MATH BOOKS I LOVE (affilliate link):
► https://www.amazon.com/shop/treforbazett

SOCIALS:
►Twitter (math based):   / treforbazett  
►Instagram (photography based):   / treforphotographyg  

The Problem of Traffic: A Mathematical Modeling Journey

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

The strangest function I know (linear but not continuous?? huh??)

The strangest function I know (linear but not continuous?? huh??)

Calm Traffic Needs More Than Calm Driving

Calm Traffic Needs More Than Calm Driving

Percolation: a Mathematical Phase Transition

Percolation: a Mathematical Phase Transition

Почему комплексные числа на самом деле — это просто специальные матрицы

Почему комплексные числа на самом деле — это просто специальные матрицы

What Lies Between a Function and Its Derivative? | Fractional Calculus

What Lies Between a Function and Its Derivative? | Fractional Calculus

Simulating an epidemic

Simulating an epidemic

Вейвлеты: математический микроскоп

Вейвлеты: математический микроскоп

Простое решение проблемы дорожного движения

Простое решение проблемы дорожного движения

Каковы основные идеи многомерного исчисления? Введение в полный курс

Каковы основные идеи многомерного исчисления? Введение в полный курс

The math of how atomic nuclei stay together is surprisingly beautiful | Full movie #SoME2

The math of how atomic nuclei stay together is surprisingly beautiful | Full movie #SoME2

The Future of Veritasium

The Future of Veritasium

This is the best way to stack blocks.

This is the best way to stack blocks.

Why There's 'No' Quintic Formula (proof without Galois theory)

Why There's 'No' Quintic Formula (proof without Galois theory)

Understanding Lagrange Multipliers Visually

Understanding Lagrange Multipliers Visually

A Swift Introduction to Geometric Algebra

A Swift Introduction to Geometric Algebra

The weirdest paradox in statistics (and machine learning)

The weirdest paradox in statistics (and machine learning)

Почему мы верим телефонным мошенникам? — Семихатов, Ениколопов

Почему мы верим телефонным мошенникам? — Семихатов, Ениколопов

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

The Five Step Method - Math Modelling | Lecture 1

The Five Step Method - Math Modelling | Lecture 1

the 5 hardest exams in the world

the 5 hardest exams in the world

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]