Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Analyzing quantitative PCR data (& RealTime PCR in general) - practical example & explanation

Автор: the bumbling biochemist

Загружено: 2023-03-19

Просмотров: 8479

Описание:

I’ve talked a lot about the theoretical basis for these techniques - using PCR to make lots of copies on a sequence, using fluorescence to measure the copies as they’re made (i.e in Real Time), and seeing how fast the fluorescence rises - but today I want to show you the practical aspects of using that rise in fluorescence to determine how many copies you started with.

blog form: https://bit.ly/qpcranalysis

And, before you get jumbled up in alphabet soup, note that RT can stand for real-time or reverse transcription. Because RT—RT-PCR is often used to measure “gene expression” by converting mRNA to complementary DNA (cDNA) then measuring levels of those copies.

Another confusing thing is that real-time PCR isn’t always truly quantitative. If you want an absolute (as opposed to relative) concentration, you need to include a standard curve of known concentration of the product. Then you compare to that. In order to compare, you need to be in the linear range of detection. So you may need to dilute your sample before running (if you aren’t sure what how much you need to dilute it, test out a few different dilution factors). If you do dilute, be sure to take this into account when calculating the concentration you get from your standard curve equation. For example, if you did a 1:4 dilution, multiply the concentration you calculate by 4 to get your initial, “stock” concentration.

Yet another confusing thing is that the terms Cq and Ct are used interchangeably to refer to the cycle number at which the fluorescence increases above the “threshold” - the signal from background. With either, the lower the value, the higher the concentration.

Hopefully the video helps explain these things better and here is a link to the example if you wanted to follow along: https://bit.ly/qpcr_analysis_example

And if you want the background details, here’s a condensed/adapted version of a past post (which deals more with RT-RT-PCR). You can find that whole thing here: http://bit.ly/rtrtqpcrprimer &    • RT-qPCR (Reverse Transcription/Real Time -...  

Just like in normal PCR, qPCR is performed in cycles of temperature changes - melt (heat up to separate strands) → anneal (cool down to let primers bind & Pol latch on) → extend (let Pol lay down complementary DNA) → repeat.
 
So you need 2 primers - one for each strand - one will define the start & the other the stop for the region you want to copy. The first primer will bind the template DNA (at where you want to start) and Pol will start copying it 5’ to 3’ until it falls off the end of the cDNA or it runs out of steam, etc. And then in the next cycle that second strand needs a primer that bind it - and where it binds will define the start of where that strand starts. And it’ll go to where the 1st primer started because that’s as far as the strand it’s copying goes. So from then on you get same-length copies each time (of a defined region book-ended by the primers)
 
Each round of PCR, another copy can be made from each copy, so you increase exponentially. In the very beginning you can’t tell this though because the levels are so low you’re below the background & just see “noise.” But soon you’ll enter the exponential phase where you get measurable doubling each cycle - and since you start with way more supplies (primers, dNTPS, etc.) than you need, you don’t have to worry about running out. But later on you do start running out, so copy # stops growing exponentially, and your curve plateaus.  
 
How do the copies get measured? Fluorescence - this is where a molecule absorbs a certain wavelength of light and release a different wavelength. More here: http://bit.ly/fluorescentstains 
 
If you can directly couple the amount of light given off to the number of copies you make, and you use a special PCR machine with a fluorescence detector, you can read out - in “Real Time” - the number of copies you’re making. There are a couple of different ways of going about this.  

“Generic” DNA-binding dyes like SYBR Green - it has a flat structure that can kinda wedge itself in between bases in DNA (intercalate). It fluoresces strongly when it’s zapped with a laser of the right wavelength of light AND it’s bound to double-stranded (ds) DNA, but not when bound to single-stranded (ss) DNA. So the more dsDNA is made (which happens when you make more copies) the more fluorescence you’ll see.  
 
An alternative is to use specific REPORTER PROBES - a common such probe method is “TaqMan” -in some ways these probes are like specific primers - they’re short pieces of DNA (oligos) that you design to match specific sequences - but unlike primers, these aren’t designed to act as starting stations for Pol - they lack a 3’OH so can’t be build off of. And instead of the start of your thing, you design them to match somewhere in the middle of the thing you want copied. 

finished in comments

Analyzing quantitative PCR data (& RealTime PCR in general) - practical example & explanation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

PAGE gel extraction in action - a practical look at gel extraction using the crush & soak method

PAGE gel extraction in action - a practical look at gel extraction using the crush & soak method

RT-qPCR (Reverse Transcription/Real Time - quantitative Polymerase Chain Reaction) theory & practice

RT-qPCR (Reverse Transcription/Real Time - quantitative Polymerase Chain Reaction) theory & practice

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Real Time PCR - Part 3

Real Time PCR - Part 3

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Вейвлеты: математический микроскоп

Вейвлеты: математический микроскоп

Interpreting & working with protein chromatography chromatograms - w/practical look on an AKTA

Interpreting & working with protein chromatography chromatograms - w/practical look on an AKTA

4 Как использовать ПЦР и кПЦР

4 Как использовать ПЦР и кПЦР

Понимание GD&T

Понимание GD&T

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

TRIzol extractions of RNA, DNA, and protein

TRIzol extractions of RNA, DNA, and protein

Molecular cloning overview - techniques & workflow

Molecular cloning overview - techniques & workflow

What is Quantitative PCR?

What is Quantitative PCR?

Understanding PCR

Understanding PCR

3) Полимеразная цепная реакция (ПЦР) – количественная ПЦР (кПЦР)

3) Полимеразная цепная реакция (ПЦР) – количественная ПЦР (кПЦР)

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Everything You Could Want To Know About PCR

Everything You Could Want To Know About PCR

Genetic Knock-Down (e.g. with RNAi - siRNA or shRNA) & Knock-Out (e.g. with CRISPR/Cas)

Genetic Knock-Down (e.g. with RNAi - siRNA or shRNA) & Knock-Out (e.g. with CRISPR/Cas)

Understanding and Performing Chromatin Immunoprecipitation (ChIP) for Analysis by qPCR

Understanding and Performing Chromatin Immunoprecipitation (ChIP) for Analysis by qPCR

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]