Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Interpreting and Leveraging Diffusion Representations with Deepti Ghadiyaram

Автор: NDIF Team

Загружено: 2026-01-15

Просмотров: 12

Описание:

Deepti Ghadiyaram is an Assistant Professor at Boston University in the Department of Computer Science, with affiliated appointments in Electrical and Computer Engineering and the Faculty of Computing & Data Sciences. Her research focuses on building safe, interpretable, and robust computer vision systems with enhanced reasoning capabilities. Prior to joining BU, she earned her PhD from UT Austin and worked at Facebook AI Applied Research and Runway.

In this seminar, Professor Ghadiyaram presents groundbreaking research on interpretability in diffusion models. The work unveils how rich visual semantic information is encoded across different layers and denoising timesteps of various diffusion architectures. Using k-sparse autoencoders, the team discovers monosemantic interpretable features and validates their findings through transfer learning experiments with lightweight classifiers on off-the-shelf diffusion models. The research demonstrates the effectiveness of diffusion features for representation learning across four datasets, while providing comprehensive analysis of how architectural choices, pre-training datasets, and language model conditioning influence visual representation granularity, inductive biases, and transfer learning performance. This work represents a significant advancement in understanding and interpreting these powerful but complex black-box models.

📄 Paper: https://arxiv.org/abs/2411.16725
💻 Code & Visualizations: https://github.com/revelio-diffusion/...
🌐 Deepti's Website: https://deeptigp.github.io/

Interpreting and Leveraging Diffusion Representations with Deepti Ghadiyaram

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Sparse Autoencoders: Progress & Limitations with Joshua Engels

Sparse Autoencoders: Progress & Limitations with Joshua Engels

ROME: Locating and Editing Factual Associations in GPT with David Bau

ROME: Locating and Editing Factual Associations in GPT with David Bau

System Dynamics: Systems Thinking and Modeling for a Complex World

System Dynamics: Systems Thinking and Modeling for a Complex World

Стэнфорд CS236: Глубокие генеративные модели I 2023 I Лекция 1 — Введение

Стэнфорд CS236: Глубокие генеративные модели I 2023 I Лекция 1 — Введение

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Text diffusion: A new paradigm for LLMs

Text diffusion: A new paradigm for LLMs

Interpreting SDXL Turbo Using Sparse Autoencoders with Chris Wendler

Interpreting SDXL Turbo Using Sparse Autoencoders with Chris Wendler

ICML 2024 Tutorial: Physics of Language Models

ICML 2024 Tutorial: Physics of Language Models

Attribute-to-Delete: Machine Unlearning via Datamodel Matching with Roy Rinberg

Attribute-to-Delete: Machine Unlearning via Datamodel Matching with Roy Rinberg

Understanding Inter-layer Communication in Transformer Language Models with Jack Merullo

Understanding Inter-layer Communication in Transformer Language Models with Jack Merullo

Stanford CS336 Language Modeling from Scratch | Spring 2025 | Lecture 1: Overview and Tokenization

Stanford CS336 Language Modeling from Scratch | Spring 2025 | Lecture 1: Overview and Tokenization

Трамп опять презирает Зеленского?

Трамп опять презирает Зеленского?

XPENG IRON - China's MOST HUMAN Robot Ever Built!

XPENG IRON - China's MOST HUMAN Robot Ever Built!

New England Mechanistic Interpretability Workshop

New England Mechanistic Interpretability Workshop

Al Oppenheim:

Al Oppenheim: "Signal Processing: How did we get to where we're going?"

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Diffusion Language Models: The Next Big Shift in GenAI

Diffusion Language Models: The Next Big Shift in GenAI

Lecture 10 | Recurrent Neural Networks

Lecture 10 | Recurrent Neural Networks

Visual Contextual Effects and Feature Interactions in Vision Transformers with Xu Pan

Visual Contextual Effects and Feature Interactions in Vision Transformers with Xu Pan

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com