Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 1 of 3)

Автор: Saniya Khullar

Загружено: 2021-02-19

Просмотров: 2721

Описание:

Please note: MEME is Multiple Expectation maximizations for Motif Elicitation. In bioinformatics, motifs typically are sequence patterns that occur many times in a group of related protein or DNA sequences. Typically, motifs are associated with some biological function (e.g. Transcription Factor Binding Sites where Transcription Factors bind to regulatory elements like promoters/enhancers). Saniya goes through a detailed toy example of applying MEME algorithm to learn a Position Weight Matrix (PWM) and associated motif occurrences.

Please note this is the 1st of 3 detailed videos walking through an example of using MEME to discover motifs for TF binding.
Part 1 of 3 (current video):    • Expectation Maximization (EM) for MEME Mot...  
Part 2 of 3:    • Expectation Maximization (EM) for MEME Mot...  
Part 3 of 3:    • Expectation Maximization (EM) for MEME Mot...  

Please note PWM should actually be called the Position Weighted Matrix and not Probability Weighted Matrix. Sorry about that!

Also, Saniya made a mistake! There are 11 unique motifs that are found across all 4 sequences :)
GTC, TCA, CAG, AGG, GAG, AGA, AGT, ACG, CGG, GGA, CCA. Alas, Saniya could not put this correction into the video and mistakenly said 9 motifs, when there really are 11! :(

Please reach out with any and all questions and please subscribe to Saniya's YouTube channel for more updates.

************ Please note this toy example: ************
L = 6 bases (length of the DNA sequence)
W = 3 bases (motif bases); please note this is a parameter we selected.
N = 4 sequences

Please note these 4 DNA sequences:
1. GTCAGG
2. GAGAGT
3. ACGGAG
4. CCAGTC

Using MEME algorithm, please find the Position Weight Matrix (PWM) including background (non-motif) probabilities. Please also find the occurrences of the motifs in these 4 sequences. :)
************************************************************************

TIME STAMPS:
00:00 Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 1 of 3)
00:21 Transcription Factors (TFs) bind to sequence-specific motifs along DNA: to their respective Transcription Factor Binding Sites (TFBSs)
01:21 Motif Model Learning Task (Multiple Expectation maximizations for Motif Elicitation)
02:35 What is Expectation Maximization (EM)?
============================ The example problem we will work on in these next 3 videos :) ===========================
02:57 The problem: Finding Motifs of Width 3 in 4 DNA sequences of Length L = 6 Bases
04:06 Finding the possible starting positions for the motifs in the sequences (based on W and L: motif width versus sequence length): m = 4 possible starting positions
======== Finding all of the unique motifs that are possible
04:52 Finding possible motifs for Sequence 1: GTC, TCA, CAG, AGG
05:31 Finding possible motifs for Sequence 2: GAG, AGA, AGT
05:56 Finding possible motifs for Sequence 3: ACG, CGG, GGA, GAG
06:10 Finding possible motifs for Sequence 4: CCA, CAG, AGT, GTC
06:38 The 11 total unique motifs: GTC, TCA, CAG, AGG, GAG, AGA, AGT, ACG, CGG, GGA, CCA (please note 9 was a mistake; there are actually 11 motifs across all 4 sequences)
07:05 Understanding the Z matrix: probability of the motif starting in a given position in each sequence. Z matrix has N rows (1 for each sequence) and m columns (1 for each possible start position for the motif)
12:08 How to initialize the Z matrix (setting equally likely probability values): values of 1/m for each entry in Z matrix.
12:53 Using Subsequences as Starting Points for EM (Initializing a PWM for a given motif)
15:18 Assumptions about background (non-motif probabilities) in the initial PWMs: backgrounds are initially 25% for each DNA base.

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 1 of 3)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 2 of 3)

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 2 of 3)

Controlling transcription in yeast: Promoter engineering to enhance/deregulate expression

Controlling transcription in yeast: Promoter engineering to enhance/deregulate expression

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 3 of 3)

Expectation Maximization (EM) for MEME Motif Discovery in Bioinformatics (Part 3 of 3)

Running Polygenic Score Catalog Calculator on the DNAnexus RAP Platform for UK Biobank Genotype Data

Running Polygenic Score Catalog Calculator on the DNAnexus RAP Platform for UK Biobank Genotype Data

Relaxing Christmas Music and Cozy Crackling Fireplace Ambience 24/7 for a Relaxed Christmas

Relaxing Christmas Music and Cozy Crackling Fireplace Ambience 24/7 for a Relaxed Christmas

Gibbs Sampler for Sequence Motif Detection Likelihood Ratio (Bioinformatics)

Gibbs Sampler for Sequence Motif Detection Likelihood Ratio (Bioinformatics)

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Evolution of RNA molecules without the help of proteins (well, almost)

Evolution of RNA molecules without the help of proteins (well, almost)

Introduction to Motif Discovery and Transcription Factor Binding Site Analysis

Introduction to Motif Discovery and Transcription Factor Binding Site Analysis

The EM Algorithm Clearly Explained (Expectation-Maximization Algorithm)

The EM Algorithm Clearly Explained (Expectation-Maximization Algorithm)

Чем ОПАСЕН МАХ? Разбор приложения специалистом по кибер безопасности

Чем ОПАСЕН МАХ? Разбор приложения специалистом по кибер безопасности

ДНК царицы Нефертити наконец проанализировали, результат поразил учёных…

ДНК царицы Нефертити наконец проанализировали, результат поразил учёных…

From Implanted Patterns to Regulatory Motifs (Part 1)

From Implanted Patterns to Regulatory Motifs (Part 1)

Интернет в небе: Сергей

Интернет в небе: Сергей "Флеш" о том, как «Шахеды» и «Герберы» научились работать в одной связке

Step 3: Subset UK Biobank BGEN Files in DNAnexus Platform Based on a Set of Genetic Variants

Step 3: Subset UK Biobank BGEN Files in DNAnexus Platform Based on a Set of Genetic Variants

Gentle Introduction to Polygenic Scores (PGSs) or Polygenic Risk Scores (PRSs)

Gentle Introduction to Polygenic Scores (PGSs) or Polygenic Risk Scores (PRSs)

Сергей Есенин: Настоящая история без школьных мифов / Личности / МИНАЕВ

Сергей Есенин: Настоящая история без школьных мифов / Личности / МИНАЕВ

Куда девается ФОТОН когда СВЕТ ГАСНЕТ? | ЧТО ВООБЩЕ ТАКОЕ СВЕТ?

Куда девается ФОТОН когда СВЕТ ГАСНЕТ? | ЧТО ВООБЩЕ ТАКОЕ СВЕТ?

Замуж в 12, рыцари-скуфы и пояса верности. Настоящее Средневековье | ФАЙБ

Замуж в 12, рыцари-скуфы и пояса верности. Настоящее Средневековье | ФАЙБ

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]