Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Dynamic Analysis of a Hyper-Chaotic Financial System with Self-Reinforcing Feedback Loop in...

Автор: SIMIODE

Загружено: 2025-03-26

Просмотров: 37

Описание:

Day 1 | 8:30 PM–9:00 PM

"Dynamic Analysis of a Hyper-Chaotic Financial System with Self-reinforcing Feedback Loop in Market Sentiment"

Presented by:
Chamalka Hashini Dharmasiri, University of Kelaniya, Dalugama, Kelaniya, Western Province, SRI LANKA

https://qubeshub.org/community/groups...

Abstract: Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions, leading to outcomes that may seem random. Hyperchaotic systems, having at least two positive Lyapunov exponents, are even more unpredictable. In finance, understanding chaotic dynamics is crucial for managing the unpredictability of market behavior. This study extends the 4D chaotic financial system proposed by B. Xin and Zhang (2015), incorporating the concept of a self-reinforcing feedback loop in market sentiment suggested by Soros in 2013. We use five key assumptions to construct the model, namely: (1) market confidence positively influences interest rates, while interest rates negatively affect market confidence; (2) market confidence boosts investment demand, which in turn reinforces confidence; (3) higher price index decreases market confidence, but higher confidence increases the price index; (4) market confidence is influenced by the product of interest rate, investment demand, and price index, with a negative correlation between this product and the rate of change of market confidence; and (5) rising market confidence boosts market performance, reinforcing confidence, while declining confidence leads to further decline. We analyze the dynamical behavior of the proposed system through phase portraits, bifurcation diagrams, waveforms and Lyapunov exponents verifying that the system exhibits hyperchaotic behavior for a range of parameter values.

Dynamic Analysis of a Hyper-Chaotic Financial System with Self-Reinforcing Feedback Loop in...

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Using WikiModel to Rapidly Create, Simulate, Fit and Share Mathematical Models

Using WikiModel to Rapidly Create, Simulate, Fit and Share Mathematical Models

Lecture 1: Introduction to 14.02 Principles of Macroeconomics

Lecture 1: Introduction to 14.02 Principles of Macroeconomics

Developing Workforce with Mathematical Modeling Skills

Developing Workforce with Mathematical Modeling Skills

Долбануть по Ирану, отжать Гренландию | Обычный вторник Трампа? (English subtitles)

Долбануть по Ирану, отжать Гренландию | Обычный вторник Трампа? (English subtitles)

The Anatomy of a Dynamical System

The Anatomy of a Dynamical System

Modeling Financial Impacts of Energy-Conserving Home Upgrades

Modeling Financial Impacts of Energy-Conserving Home Upgrades

Chaotic Dynamical Systems

Chaotic Dynamical Systems

Теория хаоса: язык (не)стабильности

Теория хаоса: язык (не)стабильности

Fundamentals of Finance & Economics for Businesses – Crash Course

Fundamentals of Finance & Economics for Businesses – Crash Course

Вселенная Билла Эванса — гений, который изменил джаз, но не смог изменить себя

Вселенная Билла Эванса — гений, который изменил джаз, но не смог изменить себя

Introduction to System Dynamics: Overview

Introduction to System Dynamics: Overview

Lecture 4: The Financial Market

Lecture 4: The Financial Market

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Понимание Z-преобразования

Понимание Z-преобразования

1. Why Finance?

1. Why Finance?

Возможно ли создать компьютеры с техпроцессом меньше 1 нм

Возможно ли создать компьютеры с техпроцессом меньше 1 нм

System Dynamics: Systems Thinking and Modeling for a Complex World

System Dynamics: Systems Thinking and Modeling for a Complex World

MAE5790-1 Course introduction and overview

MAE5790-1 Course introduction and overview

Спасибо за отзыв от Дугласа Стоуна и Шейлы Хин — Визуальное резюме

Спасибо за отзыв от Дугласа Стоуна и Шейлы Хин — Визуальное резюме

Part 2: Convolution and Cross-Correlation - G. Jensen

Part 2: Convolution and Cross-Correlation - G. Jensen

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com