Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DeepSeek AI Coding Creates Technical Debt. Repository Pattern

Автор: Incomplete Developer

Загружено: 2025-10-24

Просмотров: 92

Описание:

DeepSeek generates a wrong implementation of the Repository Pattern. End up manually fixing a lot of code.

In this video, we explore an important but often overlooked issue when using *AI to generate repetitive code* — the **accumulation of technical debt**.

When you rely heavily on tools like *DeepSeek**, **Claude**, or other AI assistants to automate boilerplate code (especially for patterns like the **Repository Pattern* in software development), it’s easy to overlook small inconsistencies or poor practices that can scale into larger problems.

---

🧩 What This Video Covers

We start by discussing a common real-world scenario:
You’re working on a large system with **20 to 50 entities or tables**, and you just want to save time by letting AI generate all the repository classes, data connections, and entity logic.

In this example, we specifically focus on *DeepSeek**, a popular AI model that allows extended usage on its **free tier* — perfect for developers who want to experiment with longer prompts or more extensive code generation without hitting usage limits too quickly (unlike some other models such as **Claude**).

Then, we look at a *repository pattern implementation* involving a few entities — `Inventory`, `Order`, `OrderItem`, and `Product` — and demonstrate how DeepSeek generates the update logic.

---

⚠️ Where Things Go Wrong

Here’s where the subtle issues begin to appear:

The generated code *fails to fully populate the entity* (`Inventory`), instead passing each property individually.
*Hardcoded DateTime values* show up in the code — something that works initially, but creates bad habits and maintainability issues.
If you scale this to *dozens or hundreds of entities**, these small issues multiply, creating thousands of lines of low-quality code and **technical debt* that’s difficult to spot or fix later.

This kind of AI-generated shortcut can easily lead to *hidden problems* — logic errors, maintainability issues, and a lack of consistency across your codebase.

---

🧠 The Right Approach

Instead of letting the AI hardcode values or create partial updates, the better approach is to:

Use a proper *Update DTO (Data Transfer Object)* that contains all entity properties.
Let your code handle entity mapping in a **structured and consistent way**.
Review and refactor AI-generated code before committing it into production.

AI is a powerful tool for productivity — but without proper review and architecture discipline, it can **generate as much technical debt as it saves time**.

---

🚀 Key Takeaways

AI-generated code isn’t always production-ready.
Small shortcuts can lead to **large-scale technical debt**.
Always review, refactor, and understand the code AI gives you.
DeepSeek’s free tier is excellent for experimentation, but not a substitute for good engineering practices.

---

🔧 Tools and Topics Mentioned

*DeepSeek AI*
*Repository Pattern*
*DTOs (Data Transfer Objects)*
*C# / .NET Examples*
*Technical Debt in AI-generated Code*

---

🏁 Conclusion

AI can be your best coding assistant — or your worst code generator — depending on how you use it.
This video serves as a reminder that even the simplest, most repetitive tasks (like repository generation) can introduce subtle bugs or long-term maintenance headaches if not done correctly.

DeepSeek AI Coding Creates Technical Debt. Repository Pattern

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(0) { }

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]