Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Airflow SubDAGs & TaskGroups Concept | Parallel Processing | Nested TaskGroups | k2analytics.co.in

Автор: Rajesh Jakhotia

Загружено: 2022-09-17

Просмотров: 8565

Описание:

Connect with us on Whatsapp: + 91 8939694874
Website Blog: https://k2analytics.co.in/blog
Write to me at: [email protected]

Data Engineering with Airflow Content:
1) Getting started with Airflow
2) Creating a Simple ETL DAG using DummyOperator
3) Creating a Simple ETL DAG using PythonOperator
4) Using XCOMs for Cross-Communication between Tasks
5) Passing DataFrame Object from Extract to Transform to Load Function
6) Connections and Hooks, airflow.hooks.postgres_hook, PostgresHook (pip install apache-airflow-providers-postgres)
7) SubDAGs, TaskGroups, Parallel Processing

Airflow is a platform to programmatically author, schedule, and monitor workflows.

Use Airflow to author workflows as Directed Acyclic Graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.

Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.

Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.

Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.

Challenges handled by Airflow:
Failures: retry if failure happens(how many times? how often?)
Monitoring: success or failure status, how long does the process runs?
Dependencies: Data dependencies: upstream data is missing
Execution dependencies: job 2 runs after job 1 is finished.
Scalability: There is no centralized scheduler between different cron machines
Deployment: deploy new changes constantly
Process historic data: backfill/rerun historic data

Connect with us on Whatsapp : + 91 8939694874
Website Blog: https://k2analytics.co.in/blog
Write to me at : [email protected]

Airflow SubDAGs & TaskGroups Concept | Parallel Processing | Nested TaskGroups | k2analytics.co.in

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Airflow Variables

Airflow Variables

ВВЕДЕНИЕ В AIRFLOW / ПОНЯТИЕ DAG'а / НАСТРОЙКА DAG'а В AIRFLOW

ВВЕДЕНИЕ В AIRFLOW / ПОНЯТИЕ DAG'а / НАСТРОЙКА DAG'а В AIRFLOW

Apache Airflow: Adios SubDAGs! Welcome TaskGroups!

Apache Airflow: Adios SubDAGs! Welcome TaskGroups!

Как создать и автоматизировать конвейер ETL в Python с помощью Airflow | Конвейер данных | Python

Как создать и автоматизировать конвейер ETL в Python с помощью Airflow | Конвейер данных | Python

Airflow TriggerDagRunOperator | Configure DAG dependencies at ease | ETL Pipelines | Master DAG

Airflow TriggerDagRunOperator | Configure DAG dependencies at ease | ETL Pipelines | Master DAG

Don't Use Apache Airflow

Don't Use Apache Airflow

Airflow XComs Explained | Cross-Communication between Tasks using XCOMS | k2analytics.co.in

Airflow XComs Explained | Cross-Communication between Tasks using XCOMS | k2analytics.co.in

How to Run Apache Airflow in Production! Best Practices for Running Apache Airflow at Scale!

How to Run Apache Airflow in Production! Best Practices for Running Apache Airflow at Scale!

Динамические DAG в Apache Airflow для продвинутых пользователей

Динамические DAG в Apache Airflow для продвинутых пользователей

Зависимости Airflow DAG: наборы данных, TriggerDAGRunOperator и ExternalTaskSensor

Зависимости Airflow DAG: наборы данных, TriggerDAGRunOperator и ExternalTaskSensor

Dynamic Tasks in Airflow

Dynamic Tasks in Airflow

Explained about XCom & Variables in Airflow #airflow

Explained about XCom & Variables in Airflow #airflow

Сисадмины больше не нужны? Gemini настраивает Linux сервер и устанавливает cтек N8N. ЭТО ЗАКОННО?

Сисадмины больше не нужны? Gemini настраивает Linux сервер и устанавливает cтек N8N. ЭТО ЗАКОННО?

Getting Started to Building Data Pipelines in Airflow | Data Engineering | ETL | k2analytics.co.in

Getting Started to Building Data Pipelines in Airflow | Data Engineering | ETL | k2analytics.co.in

Airflow XCom for Beginners - All you have to know in 10 mins

Airflow XCom for Beginners - All you have to know in 10 mins

Learn Apache Airflow in 10 Minutes | High-Paying Skills for Data Engineers

Learn Apache Airflow in 10 Minutes | High-Paying Skills for Data Engineers

Introduction to Machine Learning with MLFlow and Airflow!

Introduction to Machine Learning with MLFlow and Airflow!

[Getting started with Airflow - 3] Understanding task retries

[Getting started with Airflow - 3] Understanding task retries

Scheduling in Airflow

Scheduling in Airflow

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]