Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Functionals & Functional Derivatives | Calculus of Variations | Visualizations

Автор: Machine Learning & Simulation

Загружено: 2021-04-17

Просмотров: 24027

Описание:

We can minimize a Functional (Function of a Function) by setting the first Functional Derivative (=Gâteaux Derivative) to zero. Here are the notes: https://raw.githubusercontent.com/Cey...

A Function maps a scalar/vector/matrix to a scalar/vector/matrix. We have seen it multiple times, we know how to take derivatives etc. But now imagine something takes in a function and outputs a scalar/vector/matrix? At first this seems more complicated. Situations like these arise for instance in Lagrangian and Hamiltonian Mechanics or when deriving probability density functions from a maximum entropy principle.

But a more intuitive example: Say you want to take your car from Berlin to Munich. There are quite a lot of possible routes to take, each with a potentially different velocity and height profile. Now imagine you have a function that associates each point in time over the route with a position on the map. You could use this to deduce the height-and velocity profile. A Functional would now be a function that takes in the route and outputs the fuel consumption, i.e. mapping from a function to a scalar.

Then, you might be interested in minimizing your fuel consumption, so you seek the minimum of a Functional. First Derivative equals zero, right? But how do you take the functional derivative.

All of this and more will be answered in the video. ;)

-------

📝 : Check out the GitHub Repository of the channel, where I upload all the handwritten notes and source-code files (contributions are very welcome): https://github.com/Ceyron/machine-lea...

📢 : Follow me on LinkedIn or Twitter for updates on the channel and other cool Machine Learning & Simulation stuff:   / felix-koehler   and   / felix_m_koehler  

💸 : If you want to support my work on the channel, you can become a Patreon here:   / mlsim  

-------

Timestamps:
00:00 Introduction
00:49 Can't we just use Newtonian Mechanics?
01:27 Defining Energies and Parameters
04:21 "Average Difference in Energy"
06:20 A Functional
07:11 Example 1
08:46 Example 2
09:56 Example 3
11:18 Comparing the Examples
12:20 Visualizing the Examples
13:23 Mathematical Definition of a Functional
15:22 Concept of Minimizing a Functional
16:22 Intro to the Functional Derivative
19:43 Example: Minimizing the Functional
22:53 Rearrange for y
25:38 Fundamental Lemma of Calculus of Variations
26:55 Rediscovering Newtonian Mechanics
28:07 Solving the ODE
29:31 Summary: Functional Derivatives
30:35 Outro

Functionals & Functional Derivatives | Calculus of Variations | Visualizations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Functional Example and the Euler-Lagrange Equation

Functional Example and the Euler-Lagrange Equation

Minimization In Infinite Dimensions With The Calculus Of Variations

Minimization In Infinite Dimensions With The Calculus Of Variations

что такое производная Гато?

что такое производная Гато?

The Gaussian Integral is DESTROYED by Feynman’s Technique

The Gaussian Integral is DESTROYED by Feynman’s Technique

Почему метод Рунге-Кутты НАМНОГО лучше метода Эйлера #somepi

Почему метод Рунге-Кутты НАМНОГО лучше метода Эйлера #somepi

Calculus of Variations and the Functional Derivative

Calculus of Variations and the Functional Derivative

What is Euler Lagrange Equation | Euler Lagrange Equation Explained | Euler Lagrange Equation

What is Euler Lagrange Equation | Euler Lagrange Equation Explained | Euler Lagrange Equation

Conceptualizing the Christoffel Symbols: An Adventure in Curvilinear Coordinates

Conceptualizing the Christoffel Symbols: An Adventure in Curvilinear Coordinates

Вариационное исчисление с участием Flammable Maths

Вариационное исчисление с участием Flammable Maths

Math Bonus: Functional Derivatives

Math Bonus: Functional Derivatives

Calculus of Variations: an Animated Introduction!

Calculus of Variations: an Animated Introduction!

Functionals

Functionals

Karen Uhlenbeck: Some Thoughts on the Calculus of Variations

Karen Uhlenbeck: Some Thoughts on the Calculus of Variations

Deriving the KKT conditions for Inequality-Constrained Optimization | Introduction to Duality

Deriving the KKT conditions for Inequality-Constrained Optimization | Introduction to Duality

Understanding Lagrange Multipliers Visually

Understanding Lagrange Multipliers Visually

The Math of Bubbles // Minimal Surfaces & the Calculus of Variations #SoME3

The Math of Bubbles // Minimal Surfaces & the Calculus of Variations #SoME3

Functional differentiation

Functional differentiation

Calculus of Variations

Calculus of Variations

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

Уравнение Эйлера-Лагранжа

Уравнение Эйлера-Лагранжа

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com