Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

A Categorical View of Computational Effects

Автор: Compose Conference

Загружено: 2017-07-07

Просмотров: 24358

Описание:

Keynote by Dr. Emily Riehl
C◦mp◦se :: Conference
http://www.composeconference.org/
May 18, 2017

Slides: http://www.math.jhu.edu/~eriehl/compo...

Monads have famously been used to model computational effects, although, curiously, the computer science literature presents them in a form that is scarcely recognizable to a category theorist — I’d say instead that a monad is just a monoid in the category of endofunctors, what’s the problem? ;) To a categorical eye, computational effects are modeled using the Kleisli category of a monad, a perspective which suggests another categorical tool that might be used to reason about computation. The Kleisli category is closely related to another device for categorical universal algebra called a Lawvere theory, which may be a more natural framework to model computation (an idea suggested by Gibbons, Hinze, Hyland, Plotkin, Power and certainly others). This talk will survey monads, Lawvere theories, and the relationships between them and illustrate the advantages and disadvantages of each framework through a variety of examples: lists, exceptions, side effects, input-output, probabilistic non-determinism, and continuations.

A Categorical View of Computational Effects

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Lambda World 2019 - A categorical view of computational effects - Emily Riehl

Lambda World 2019 - A categorical view of computational effects - Emily Riehl

The Kreisel Lawvere Debate on Categories and the Foundations of Mathematics

The Kreisel Lawvere Debate on Categories and the Foundations of Mathematics

George Wilson - The Extended Functor Family

George Wilson - The Extended Functor Family

A Crash Course in Category Theory - Bartosz Milewski

A Crash Course in Category Theory - Bartosz Milewski

The Absolute Best Intro to Monads For Software Engineers

The Absolute Best Intro to Monads For Software Engineers

Проблема стабильного брака (математическая часть)

Проблема стабильного брака (математическая часть)

Mindscape 146 | Emily Riehl on Topology, Categories, and the Future of Mathematics

Mindscape 146 | Emily Riehl on Topology, Categories, and the Future of Mathematics

What is Category Theory in mathematics? Johns Hopkins' Dr. Emily Riehl explains

What is Category Theory in mathematics? Johns Hopkins' Dr. Emily Riehl explains

Bidirectional Type Checking

Bidirectional Type Checking

F(by) 2017. Bartosz Milewski - A Crash Course in Category Theory.

F(by) 2017. Bartosz Milewski - A Crash Course in Category Theory.

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

What A General Diagonal Argument Looks Like (Category Theory)

What A General Diagonal Argument Looks Like (Category Theory)

Programming with Categories - Lecture 0

Programming with Categories - Lecture 0

ACT 2020 Tutorial: The Yoneda lemma in the category of matrices (Emily Riehl)

ACT 2020 Tutorial: The Yoneda lemma in the category of matrices (Emily Riehl)

Math Talk!  Dr. Emily Riehl, to infinity categories and beyond.

Math Talk! Dr. Emily Riehl, to infinity categories and beyond.

Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев

Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев

Naïve Type Theory by Thorsten Altenkirch (University of Nottingham, UK)

Naïve Type Theory by Thorsten Altenkirch (University of Nottingham, UK)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Category Theory for the Working Hacker by Philip Wadler

Category Theory for the Working Hacker by Philip Wadler

Emily Riehl | Feb 16, 2021 | Elements of ∞-Category Theory

Emily Riehl | Feb 16, 2021 | Elements of ∞-Category Theory

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]