Ruslan Senatorov | Урок 1.Постановка задачи машинного обучения
Автор: Руслан Сенаторов | Школа Data Science, ML, Python
Загружено: 2025-12-17
Просмотров: 74
00:00:00 Введение в нулевую оптимизацию
00:01:36 Оптимизация нулевого порядка не использует производную.
00:02:36 Применяется для подбора гиперпараметров модели.Grid Search
00:05:24 Постановка задачи машинного обучения
00:07:17 Датасет — это таблица в Excel или CSV.
00:09:37 Визуализация данных
00:11:47 Понятие корреляции
00:13:27 Выбор модели
00:14:09 Введение в EDA анализ
00:15:18 Применение линейной регрессии
00:18:02 Распределение наблюдений в поле корреляции для оценки взаимосвязи.
00:20:03 Положительная корреляция: увеличение X приводит к увеличению Y.
00:22:27 Формула линейной регрессии
00:25:04 Параметры модели
00:26:51 Понятие признаков и таргета
00:29:02 Классы машинного обучения
00:30:04 Алгоритмы, работающие по таргету, это обучение с учителем.
00:32:02 Алгоритмы обучения без учителя
00:36:42 Визуализация данных
00:37:02 Реверс-инжиниринг модели
00:40:54 Построение графика
00:42:24 Использование формулы вручную
00:42:44 Построение графика и определение точек
00:43:29 Введение понятия y_pred
00:44:49 набор точек y_pred образует линию регрессии.
00:45:49 Введение понятия таргета
00:46:52 Расчёт расстояния между точками
00:48:25 Объяснение использования квадратов
00:52:49 Геометрическое объяснение
00:55:26 Метод наименьших квадратов
00:56:01 Введение в метод наименьших квадратов
00:57:02 Визуализация квадратов
00:58:15 Цель метода наименьших квадратов
00:59:19 Математическое обоснование
01:00:28 Ошибка и коэффициенты
01:02:03 Заключение и анонс следующего урока
🚀 Вступай в сообщество: https://boosty.to/SENATOROV
🍑 Подписывайся на Telegram: https://t.me/RuslanSenatorov
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: