Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Building State-of-the-Art Forecast Systems with the Ensemble Kalman Filter

Автор: Greg Bronevetsky

Загружено: 2023-05-04

Просмотров: 1628

Описание:

Jeff Anderson @ NCAR
https://staff.ucar.edu/users/jla

https://sites.google.com/modelingtalk...

Abstract:
The development of numerical weather prediction was one of the great scientific and computational achievements of the last century. Computer models that approximate solutions of the partial differential equations that govern fluid flow and a comprehensive global observing network are two components of this prediction enterprise. An essential third component is data assimilation, the computational method that combines observations with predictions from previous times to produce initial conditions for subsequent predictions. The best present-day numerical weather prediction systems have evolved over decades and feature model-specific assimilation systems built with nearly a person century of effort.

This talk describes the development of a community software facility for ensemble Kalman filter data assimilation, the Data Assimilation Research Testbed (DART). DART can produce high-quality weather predictions but can also be used to build a comprehensive forecast system for any prediction model and observations. The basic ensemble Kalman filter is described and applied to simple example problems. Heuristic extensions to the basic algorithm that are essential for large applications are presented in a historical context.

An ensemble forecast system can do much more than just make probabilistic predictions. By confronting a prediction model with observations, it can estimate model parameters and guide general model improvement. It can also evaluate the quality of existing observations and inform the design of future observing systems. Examples of these capabilities are provided for a variety of geophysical applications.

Bio:
My research career has spanned two decades and has been focused by the common theme to improve predictions of the earth’s atmosphere. I have made research contributions in theoretical geophysical fluid dynamics, seasonal prediction , predictability , ensemble prediction and ensemble data assimilation. My accomplishments in software engineering, applied mathematics and statistics have been directly in support of my goal to improve prediction.

Building State-of-the-Art Forecast Systems with the Ensemble Kalman Filter

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Quantifying the Induced Land Use Change by Biofuels

Quantifying the Induced Land Use Change by Biofuels

Data Assimilation lecture 1

Data Assimilation lecture 1

Modeling the future of food systems with IFPRI’s IMPACT modeling system

Modeling the future of food systems with IFPRI’s IMPACT modeling system

Predicting human decisions with behavioural theories and machine learning

Predicting human decisions with behavioural theories and machine learning

Цепи Маркова — математика предсказаний [Veritasium]

Цепи Маркова — математика предсказаний [Veritasium]

Год отключений и блокировок: что осталось от интернета в России?

Год отключений и блокировок: что осталось от интернета в России?

Predictive Pattern Recognition of Plant Growth Traits in Simulated and Controlled Environments

Predictive Pattern Recognition of Plant Growth Traits in Simulated and Controlled Environments

MIT on Chaos and Climate: From Determinism to Probability in Numerical Weather Prediction

MIT on Chaos and Climate: From Determinism to Probability in Numerical Weather Prediction

Foundation Potentials for Massive Scale Materials Design

Foundation Potentials for Massive Scale Materials Design

Decoding Earth system–climate interactions over millions of years

Decoding Earth system–climate interactions over millions of years

Data Assimilation: variational data assimilation and the ensemble Kalman filter

Data Assimilation: variational data assimilation and the ensemble Kalman filter

Vivien Mallet:  Introduction to data assimilation: Kalman filters and ensembles

Vivien Mallet: Introduction to data assimilation: Kalman filters and ensembles

Фильтр Калмана — Часть 1

Фильтр Калмана — Часть 1

Webinar - WOFOST: A simulation model for quantitative analysis of growth & production of field crops

Webinar - WOFOST: A simulation model for quantitative analysis of growth & production of field crops

Ensemble Kalman Filter

Ensemble Kalman Filter

Atmospheric consequences and climate integrity: modeling soil-based carbon dioxide removal (CDR)

Atmospheric consequences and climate integrity: modeling soil-based carbon dioxide removal (CDR)

Decoding Earth system–climate interactions over millions of years

Decoding Earth system–climate interactions over millions of years

Jeff Anderson | NCAR IMAGe | Building State-of-the-Art Forecast Systems with the Ensemble Kalman

Jeff Anderson | NCAR IMAGe | Building State-of-the-Art Forecast Systems with the Ensemble Kalman

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Why Use Kalman Filters? | Understanding Kalman Filters, Part 1

Why Use Kalman Filters? | Understanding Kalman Filters, Part 1

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]