Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Marcus Hutter | Universal Artificial Intelligence and Solomonoff Induction | The Cartesian Cafe

Автор: Timothy Nguyen

Загружено: 2024-05-10

Просмотров: 7787

Описание:

Marcus Hutter is an artificial intelligence researcher who is both a Senior Researcher at Google DeepMind and an Honorary Professor in the Research School of Computer Science at Australian National University. He is responsible for the development of the theory of Universal Artificial Intelligence, for which he has written two books, one back in 2005 and one coming right off the press as we speak. Marcus is also the creator of the Hutter prize, for which you can win a sizable fortune for achieving state of the art lossless compression of Wikipedia text.

#ai #artificialintelligence #math #maths #machinelearning

Patreon (bonus materials + video chat):
  / timothynguyen  

In this technical conversation, we cover material from Marcus’s two books “Universal Artificial Intelligence” (2005) and “Introduction to Universal Artificial Intelligence” (2024). The main goal is to develop a mathematical theory for combining sequential prediction (which seeks to predict the distribution of the next observation) together with action (which seeks to maximize expected reward), since these are among the problems that intelligent agents face when interacting in an unknown environment. Solomonoff induction provides a universal approach to sequence prediction in that it constructs an optimal prior (in a certain sense) over the space of all computable distributions of sequences, thus enabling Bayesian updating to enable convergence to the true predictive distribution (assuming the latter is computable). Combining Solomonoff induction with optimal action leads us to an agent known as AIXI, which in this theoretical setting, can be argued to be a mathematical incarnation of artificial general intelligence (AGI): it is an agent which acts optimally in general, unknown environments.

The second half of our discussion concerning agents assumes familiarity with the basic setup of reinforcement learning.

I. Introduction
00:00 : Preview
00:38 : Biography
01:45 : From Physics to AI
03:05 : Hutter Prize
06:25 : Overview of Universal Artificial Intelligence
11:10 : Technical outline

II. Universal Prediction
18:27 : Laplace’s Rule and Bayesian Sequence Prediction
40:54 : Different priors: KT estimator
44:39 : Sequence prediction for countable hypothesis class
53:23 : Generalized Solomonoff Bound (GSB)
57:56 : Example of GSB for uniform prior
1:04:24 : GSB for continuous hypothesis classes
1:08:28 : Context tree weighting
1:12:31 : Kolmogorov complexity
1:19:36 : Solomonoff Bound & Solomonoff Induction
1:21:27 : Optimality of Solomonoff Induction
1:24:48 : Solomonoff a priori distribution in terms of random Turing machines
1:28:37 : Large Language Models (LLMs)
1:37:07 : Using LLMs to emulate Solomonoff induction
1:41:41 : Loss functions
1:50:59 : Optimality of Solomonoff induction revisited
1:51:51 : Marvin Minsky

III. Universal Agents
1:52:42 : Recap and intro
1:55:59 : Setup
2:06:32 : Bayesian mixture environment
2:08:02 : AIxi. Bayes optimal policy vs optimal policy
2:11:27 : AIXI (AIxi with xi = Solomonoff a priori distribution)
2:12:04 : AIXI and AGI. Clarification: ASI (Artificial Super Intelligence) would be a more appropriate term than AGI for the AIXI agent.
2:12:41 : Legg-Hutter measure of intelligence
2:15:35 : AIXI explicit formula
2:23:53 : Other agents (optimistic agent, Thompson sampling, etc)
2:33:09 : Multiagent setting
2:39:38 : Grain of Truth problem
2:44:38 : Positive solution to Grain of Truth guarantees convergence to a Nash equilibria
2:45:01 : Computable approximations (simplifying assumptions on model classes): MDP, CTW, LLMs
2:56:13 : Outro: Brief philosophical remarks

Further Reading:
M. Hutter, D. Quarrel, E. Catt. An Introduction to Universal Artificial Intelligence
M. Hutter. Universal Artificial Intelligence
S. Legg and M. Hutter. Universal Intelligence: A Definition of Machine Intelligence

Twitter:
@iamtimnguyen

Webpage:
http://www.timothynguyen.org

Apple Podcasts:
https://podcasts.apple.com/us/podcast...

Spotify:
https://open.spotify.com/show/1X5asAB...

Marcus Hutter | Universal Artificial Intelligence and Solomonoff Induction | The Cartesian Cafe

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Marcus Hutter: Universal Artificial Intelligence, AIXI, and AGI | Lex Fridman Podcast #75

Marcus Hutter: Universal Artificial Intelligence, AIXI, and AGI | Lex Fridman Podcast #75

Michael Freedman | A Fields Medalist Panorama | The Cartesian Cafe with Timothy Nguyen

Michael Freedman | A Fields Medalist Panorama | The Cartesian Cafe with Timothy Nguyen

Ray J Solomonoff Midwest NKS 2005 Lecture

Ray J Solomonoff Midwest NKS 2005 Lecture

Дерек уходит из Veritasium?

Дерек уходит из Veritasium?

Can We Build an Artificial Hippocampus?

Can We Build an Artificial Hippocampus?

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

«Я понял, что это конец»: как создатель «Алисы» уволился из «Сбера», эмигрировал и строит AI-стартап

«Я понял, что это конец»: как создатель «Алисы» уволился из «Сбера», эмигрировал и строит AI-стартап

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Astonishing discovery by computer scientist: how to squeeze space into time

Astonishing discovery by computer scientist: how to squeeze space into time

Как работала машина

Как работала машина "Энигма"?

How Do We Build a General Intelligence?

How Do We Build a General Intelligence?

Refuting Eric Weinstein's and Stephen Wolfram's Theories of Everything | Scott Aaronson & Tim Nguyen

Refuting Eric Weinstein's and Stephen Wolfram's Theories of Everything | Scott Aaronson & Tim Nguyen

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

Как SpaceX построит город на Марсе

Как SpaceX построит город на Марсе

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

The Misconception that Almost Stopped AI [How Models Learn Part 1]

The Misconception that Almost Stopped AI [How Models Learn Part 1]

Marcus Hutter - Can AGI be achieved with Deep Learning alone?

Marcus Hutter - Can AGI be achieved with Deep Learning alone?

Jeff Eldred Introduces Solomonoff Induction

Jeff Eldred Introduces Solomonoff Induction

The F=ma of Artificial Intelligence [Backpropagation, How Models Learn Part 2]

The F=ma of Artificial Intelligence [Backpropagation, How Models Learn Part 2]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com