Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Efficiently Visualizing Large Datasets with Matplotlib

Автор: vlogize

Загружено: 2025-05-24

Просмотров: 1

Описание:

Learn how to sequentially print and append graphs using Matplotlib, effectively visualizing your results from large datasets without running out of memory.
---
This video is based on the question https://stackoverflow.com/q/71644672/ asked by the user 'lkaupp' ( https://stackoverflow.com/u/4779586/ ) and on the answer https://stackoverflow.com/a/71645259/ provided by the user 'Matei S' ( https://stackoverflow.com/u/10834954/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Matplotlib sequentially printing /append to image

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Visualizing Large Datasets with Matplotlib: A Step-by-Step Guide

When working with large datasets, especially when training deep learning models with tools like TensorFlow, memory constraints can often pose a significant challenge. This challenge becomes apparent when you want to verify your training results but find that the combined size of your dataset and the graphical outputs is too large for your system to handle at once. If you've faced this dilemma, you're not alone! Many data scientists and machine learning practitioners find it necessary to visualize their results without overwhelming their system's memory. In this guide, we'll explore how you can use Matplotlib to sequentially create and save graphs, allowing you to effectively visualize your results without hitting memory limits.

The Problem: Visualizing Without Overloading Memory

Let’s say you're working with a colossal dataset that doesn’t fit into your memory. After training your neural network with this dataset using TensorFlow's tf.Dataset, you've achieved some promising results. Now, however, you want to visualize these results by plotting them on a graph. Unfortunately, your dataset plus the plot might exceed the available 32 GB of RAM, making traditional methods of plotting impractical. What can you do?

The Solution: Sequential Graph Plotting with Matplotlib

Rather than attempting to plot your entire dataset in one go—which could lead to memory overflow—let's break down the plotting process into manageable parts. Here’s a structured approach you can follow:

Step-by-Step Approach

Create an Empty Plot: Start by initiating your plotting environment, but leave it empty for now.

Predict on a Batch: Use your trained model to predict values from a subset (batch) of your dataset.

Append Results to Lists: Instead of plotting the results directly, store the predicted values in a list. This way, you can handle smaller chunks of data without memory issues.

Repeat Steps 2 and 3: Continue predicting on batches and appending results until you've processed your entire dataset.

Plot the Final Arrays: After all batches have been processed, plot your finalized data using Matplotlib.

Example of the Approach

Here's a simple example to illustrate the above steps in Python code:

[[See Video to Reveal this Text or Code Snippet]]

Tips for Success

Memory Management: Always keep an eye on your memory usage. Using lists to collect predictions helps significantly, but you might still need to manage the size of final_predictions before plotting.

Incremental Saving: If your sessions are still running close to memory limits, consider saving intermediate graphs after each batch instead. This way, you can keep track of all outputs while slowly streaming results to files.

Data Combination: How you combine results will depend on your specific use case. Ensure that you understand each step of your dataset's transformations and model predictions.

By following this structured approach, you can effectively visualize results from large datasets using Matplotlib without exceeding memory limits, helping you better understand and verify your model's performance.

Conclusion

In conclusion, visualizing large datasets can certainly present challenges when memory constraints come into play. By adapting your plotting process to handle data in manageable batches, you can still create meaningful graphs that help in analyzing your model's predictions. With methods like the one above, you can confidently work with large datasets in Python while efficiently managing your system's resources. Start implementing this technique today and experience the ease of visualizing even the largest datasets!

Efficiently Visualizing Large Datasets with Matplotlib

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4528 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "jfKfPfyJRdk" ["related_video_title"]=> string(47) "lofi hip hop radio 📚 beats to relax/study to" ["posted_time"]=> string(0) "" ["channelName"]=> string(9) "Lofi Girl" } [1]=> object(stdClass)#4501 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "IHZwWFHWa-w" ["related_video_title"]=> string(131) "Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(11) "3Blue1Brown" } [2]=> object(stdClass)#4526 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "wjZofJX0v4M" ["related_video_title"]=> string(148) "LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(11) "3Blue1Brown" } [3]=> object(stdClass)#4533 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "LcsvJ-jgn7I" ["related_video_title"]=> string(93) "Business Analyst Full Course [2025] | Business Analyst Tutorial For Beginners | Edureka Live" ["posted_time"]=> string(0) "" ["channelName"]=> string(8) "edureka!" } [4]=> object(stdClass)#4512 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "iyhBvqXesz4" ["related_video_title"]=> string(106) "Где грань морали у ИИ? Нейронка решает парадокс вагонетки!" ["posted_time"]=> string(23) "1 месяц назад" ["channelName"]=> string(48) "НИКТА | Бизнес и нейросети " } [5]=> object(stdClass)#4530 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "aircAruvnKk" ["related_video_title"]=> string(101) "Но что такое нейронная сеть? | Глава 1. Глубокое обучение" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(11) "3Blue1Brown" } [6]=> object(stdClass)#4525 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "LjOewfgdM18" ["related_video_title"]=> string(171) "ВОССТАНОВЛЕНИЕ НЕРВНОЙ СИСТЕМЫ 🌸 Нежная музыка, успокаивает нервную систему и радует душу #6" ["posted_time"]=> string(27) "5 месяцев назад" ["channelName"]=> string(15) "Relax Your Soul" } [7]=> object(stdClass)#4535 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "V3d6uoNqdaY" ["related_video_title"]=> string(162) "РЕШЕТНИКОВ: "ЭКОНОМИКА "НА ГРАНИ"/ ЧИНОВНИКОВ ПРОРВАЛО НА ПМЭФ/ ИРАН И ЦЕНЫ НА НЕФТЬ. Милов" ["posted_time"]=> string(24) "16 часов назад" ["channelName"]=> string(19) "Майкл Наки" } [8]=> object(stdClass)#4511 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "efKm00MQgng" ["related_video_title"]=> string(71) "Мы победили Jeep! Все было так просто…" ["posted_time"]=> string(19) "2 дня назад" ["channelName"]=> string(34) "ИЛЬДАР АВТО-ПОДБОР" } [9]=> object(stdClass)#4529 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fcjBfSiyI0k" ["related_video_title"]=> string(69) "Coder vs Developer vs Software Engineer, What’s the Difference?" ["posted_time"]=> string(19) "4 дня назад" ["channelName"]=> string(27) "Modern Software Engineering" } }
lofi hip hop radio 📚 beats to relax/study to

lofi hip hop radio 📚 beats to relax/study to

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Business Analyst Full Course [2025]  | Business Analyst Tutorial For Beginners | Edureka Live

Business Analyst Full Course [2025] | Business Analyst Tutorial For Beginners | Edureka Live

Где грань морали у ИИ? Нейронка решает парадокс вагонетки!

Где грань морали у ИИ? Нейронка решает парадокс вагонетки!

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

ВОССТАНОВЛЕНИЕ НЕРВНОЙ СИСТЕМЫ 🌸 Нежная музыка, успокаивает нервную систему и радует душу #6

ВОССТАНОВЛЕНИЕ НЕРВНОЙ СИСТЕМЫ 🌸 Нежная музыка, успокаивает нервную систему и радует душу #6

РЕШЕТНИКОВ:

РЕШЕТНИКОВ: "ЭКОНОМИКА "НА ГРАНИ"/ ЧИНОВНИКОВ ПРОРВАЛО НА ПМЭФ/ ИРАН И ЦЕНЫ НА НЕФТЬ. Милов

Мы победили Jeep! Все было так просто…

Мы победили Jeep! Все было так просто…

Coder vs Developer vs Software Engineer, What’s the Difference?

Coder vs Developer vs Software Engineer, What’s the Difference?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]