Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lecture 2: Density Increment, Fourier Methods in Combinatorial Number Theory

Автор: Webinar in Additive Combinatorics

Загружено: 2020-11-11

Просмотров: 1222

Описание:

As part of the LMS Scheme 3 Covid response, we are hosting a series of online lectures on 'Fourier methods in combinatorial number theory'. The Scheme 3 Covid response aims to provide extra training and support to early career researchers during the pandemic.

Signup to receive email notifications and Zoom links for lectures by following this link: https://forms.gle/9TJv1RTPWjVyekmQ6.

Description: Fourier analysis is a fundamental tool in number theory, particularly in the detection of solutions to equations in arithmetically structured sets, as in Waring's problem or Goldbach's conjecture. This course explores the detection of arithmetic configurations within unstructured sets of integers - those for which we have only combinatorial information, such as their density. Techniques originating in additive combinatorics have been developed to tease out the latent structure present in such sets, separating it from random 'noise'. Resolving these combinatorial problems can then feed back into more classical problems of number theory, such as detecting arithmetic structures in the primes.  The Fourier-analytic approach to Szemerédi-type problems was pioneered by Roth and Gowers, with spectacular further success in work of Green, Tao and Ziegler on patterns in the primes. The intention of this course is to introduce these ideas in their simplest instances, with pointers towards more advanced implementations and quantitative refinements. 

Lecturer: Sean Prendiville

Intended audience: Graduate students in number theory, combinatorics and analysis.

Pre-requisites: Nothing beyond undergraduate analysis and a fortitude for persevering with epsilon-delta management.

Key words: additive combinatorics; higher order Fourier analysis; Szemerédi's theorem; combinatorial number theory; the Hardy-Littlewood circle method. 

Syllabus: Heuristics in the circle method; counting in Fourier uniform sets; density increment; the arithmetic regularity lemma; energy increment; dual functions; the transference principle.

Dates: Wednesday 4pm (GMT, London); November 4, 11, 18, 25; December 2, 9.

All lectures will be broadcast live via Zoom and uploaded to YouTube after the event.

Lecture notes (updated the week before each lecture): https://bit.ly/3l1cVA2

Lecture 2: Density Increment, Fourier Methods in Combinatorial Number Theory

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Lecture 3: Arithmetic Regularity, Fourier Methods in Combinatorial Number Theory

Lecture 3: Arithmetic Regularity, Fourier Methods in Combinatorial Number Theory

Harmonic Functions

Harmonic Functions

The High Schooler Who Solved a Prime Number Theorem

The High Schooler Who Solved a Prime Number Theorem

Deep Mood Radio • 24/7 Live Radio | Best Relax House, Chillout, Study, Running, Gym, Happy Music

Deep Mood Radio • 24/7 Live Radio | Best Relax House, Chillout, Study, Running, Gym, Happy Music

Бен Грин, Анализ Фурье высшего порядка и его применение

Бен Грин, Анализ Фурье высшего порядка и его применение

Lecture 1: Counting Solutions, Fourier Methods in Combinatorial Number Theory

Lecture 1: Counting Solutions, Fourier Methods in Combinatorial Number Theory

Fourier Methods in Combinatorial Number Theory

Fourier Methods in Combinatorial Number Theory

Ibiza Summer Mix 2025 🍓 Best Of Tropical Deep House Music Chill Out Mix 2024 🍓 Chillout Lounge

Ibiza Summer Mix 2025 🍓 Best Of Tropical Deep House Music Chill Out Mix 2024 🍓 Chillout Lounge

Summer Mix 2026 🍓 Best Popular Songs 2026 🍓Faded, Supergirl, A Sky Full Of Star, Perfect Cover

Summer Mix 2026 🍓 Best Popular Songs 2026 🍓Faded, Supergirl, A Sky Full Of Star, Perfect Cover

January Jazz ☕ Positive Morning Winter Jazz Cafe & Sweet Bossa Nova Piano for Uplifting the Day

January Jazz ☕ Positive Morning Winter Jazz Cafe & Sweet Bossa Nova Piano for Uplifting the Day

Lecture 6: Energy Increment, Fourier Methods in Combinatorial Number Theory

Lecture 6: Energy Increment, Fourier Methods in Combinatorial Number Theory

Jared Duker Lichtman (Oxford): Twin primes & a modified linear sieve

Jared Duker Lichtman (Oxford): Twin primes & a modified linear sieve

Izabella Łaba: Cyclotomic divisibility—from tiling to harmonic analysis and geometric measure theory

Izabella Łaba: Cyclotomic divisibility—from tiling to harmonic analysis and geometric measure theory

Музыка лечит сердце и сосуды🌸 Успокаивающая музыка восстанавливает нервную систему,расслабляющая

Музыка лечит сердце и сосуды🌸 Успокаивающая музыка восстанавливает нервную систему,расслабляющая

Битва Титанов !!! Жавохир Синдаров (3207) - Абдусатторов Нодирбек (3183)

Битва Титанов !!! Жавохир Синдаров (3207) - Абдусатторов Нодирбек (3183)

Ben Green (Oxford): Quadratic forms in 8 prime variables

Ben Green (Oxford): Quadratic forms in 8 prime variables

FULL MATCH | Fan Zhendong vs Alberto Mino | 2026 German League

FULL MATCH | Fan Zhendong vs Alberto Mino | 2026 German League

Benny Sudakov (ETH): Small doubling, atomic structure and l-divisible set families

Benny Sudakov (ETH): Small doubling, atomic structure and l-divisible set families

FULL MATCH | Jang Woojin vs Lin Yun-Ju| MS Final | WTT Champions Doha 2026

FULL MATCH | Jang Woojin vs Lin Yun-Ju| MS Final | WTT Champions Doha 2026

Sam Chow (Warwick): Galois groups of random polynomials

Sam Chow (Warwick): Galois groups of random polynomials

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com