Step-by-Step Guide to Create AI RAG Agent using LangGraph | Python Tutorial
Автор: CoderzColumn
Загружено: 6 апр. 2025 г.
Просмотров: 929 просмотров
Hi, My name is Sunny Solanki, and in this video, I provide a step-by-step guide to implementing the RAG AGENT using the Python library "LANGGRAPH". The agent uses chunks from Apple 10k report to answer questions about apple's financials. I have used open-source LLM Llama-3.3 (70B) freely available through Groq API for building the agent. The tutorial is good starting point for someone new to LangGraph.
============================================
CODE - https://github.com/sunny2309/langchai...
==============================================
=======================================================
WEBSITE - https://coderzcolumn.com
=======================================================
Important Chapters:
0:00 - Build RAG Agent using LangGraph Intro
2:20 - Load LLM
3:55 - Define Retriever Tools | Functions
13:02 - Bind Tools with LLM
15:45 - Define RAG Agent
28:16 - Query Agent
#python #datascience #datasciencetutorial #python #pythonprogramming #pythoncode #pythontutorial #llama3 #langchain #langchain-function-calling #langchain-llama3 #groqapi #langchain-open-source-llms #how-to-use-langchain #langgraph #langgraph-agent #rag-agent

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: