Learning to Walk in Minutes Using Massively Parallel Deep RL
Автор: Robotic Systems Lab: Legged Robotics at ETH Zürich
Загружено: 5 окт. 2021 г.
Просмотров: 71 579 просмотров
We present a training set-up that achieves fast policy generation for real-world robotic tasks by using massive parallelism on a single workstation GPU. The parallel approach allows training policies for flat terrain in under 4 minutes, and in 20 minutes for uneven terrain.
Paper accepted to CoRL 2021.
Code and paper: https://leggedrobotics.github.io/legg...

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: