Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

ML Robustness & Engineering - Andrew Ilyas (MIT)

Автор: Machine Learning Street Talk

Загружено: 2024-08-21

Просмотров: 6149

Описание:

Andrew Ilyas, a PhD student at MIT who is about to start as a professor at CMU. We discuss Data modeling and understanding how datasets influence model predictions, Adversarial examples in machine learning and why they occur, Robustness in machine learning models, Black box attacks on machine learning systems, Biases in data collection and dataset creation, particularly in ImageNet and Self-selection bias in data and methods to address it.

MLST is sponsored by Brave:
The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now - get 2,000 free queries monthly at http://brave.com/api

This is video 4/13 from ICML 2024

Andrew's site:
https://andrewilyas.com/
https://x.com/andrew_ilyas

TOC:
00:00:00 - Introduction and Andrew's background
00:03:52 - Overview of the machine learning pipeline
00:06:31 - Data modeling paper discussion
00:26:28 - TRAK: Evolution of data modeling work
00:43:58 - Discussion on abstraction, reasoning, and neural networks
00:53:16 - "Adversarial Examples Are Not Bugs, They Are Features" paper
01:03:24 - Types of features learned by neural networks
01:10:51 - Black box attacks paper
01:15:39 - Work on data collection and bias
01:25:48 - Future research plans and closing thoughts

Pod version: https://podcasters.spotify.com/pod/sh...

References:
Adversarial Examples Are Not Bugs, They Are Features
https://arxiv.org/pdf/1905.02175

TRAK: Attributing Model Behavior at Scale
https://arxiv.org/pdf/2303.14186

Datamodels: Predicting Predictions from Training Data
https://arxiv.org/pdf/2202.00622

Adversarial Examples Are Not Bugs, They Are Features
https://arxiv.org/pdf/1905.02175

IMAGENET-TRAINED CNNS
https://arxiv.org/pdf/1811.12231

ZOO: Zeroth Order Optimization Based Black-box
https://arxiv.org/pdf/1708.03999

A Spline Theory of Deep Networks
https://proceedings.mlr.press/v80/bal...

Scaling Monosemanticity
https://transformer-circuits.pub/2024...

Adversarial Examples Are Not Bugs, They Are Features
https://gradientscience.org/adv/

Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies
https://proceedings.mlr.press/v235/ba...

Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors
https://arxiv.org/abs/1807.07978

Estimation of Standard Auction Models
https://arxiv.org/abs/2205.02060

From ImageNet to Image Classification: Contextualizing Progress on Benchmarks
https://arxiv.org/abs/2005.11295

Estimation of Standard Auction Models
https://arxiv.org/abs/2205.02060

What Makes A Good Fisherman? Linear Regression under Self-Selection Bias
https://arxiv.org/abs/2205.03246

Towards Tracing Factual Knowledge in Language Models Back to the
Training Data [Akyürek]
https://arxiv.org/pdf/2205.11482

ML Robustness & Engineering - Andrew Ilyas (MIT)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Dr. JEFF BECK - The probability approach to AI

Dr. JEFF BECK - The probability approach to AI

Neural Networks Are Elastic Origami! [Prof. Randall Balestriero]

Neural Networks Are Elastic Origami! [Prof. Randall Balestriero]

Understanding Black-box Predictions via Influence Functions

Understanding Black-box Predictions via Influence Functions

This is what happens when you let AIs debate

This is what happens when you let AIs debate

The Elegant Math Behind Machine Learning

The Elegant Math Behind Machine Learning

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Как внимание стало настолько эффективным [GQA/MLA/DSA]

Как внимание стало настолько эффективным [GQA/MLA/DSA]

«Я понял, что это конец»: как создатель «Алисы» уволился из «Сбера», эмигрировал и строит AI-стартап

«Я понял, что это конец»: как создатель «Алисы» уволился из «Сбера», эмигрировал и строит AI-стартап

"Можно наличкой?" Почему в магазинах стали чаще это просить? Дмитрий Потапенко

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

Ciara Zogheib & Kaushar Mahetaji

Ciara Zogheib & Kaushar Mahetaji "Government Data and AI Strategies"

Николас Карлини – Некоторые уроки состязательного машинного обучения

Николас Карлини – Некоторые уроки состязательного машинного обучения

Ультиматум Трампу / Полный разрыв отношений с Москвой

Ультиматум Трампу / Полный разрыв отношений с Москвой

Using Bayesian Approaches & Sausage Plots to Improve Machine Learning - Computerphile

Using Bayesian Approaches & Sausage Plots to Improve Machine Learning - Computerphile

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

This man builds intelligent machines

This man builds intelligent machines

BREAKING NEWS: Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

BREAKING NEWS: Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

Claude Code Ends SaaS, the Gemini + Siri Partnership, and Math Finally Solves AI | #224

Claude Code Ends SaaS, the Gemini + Siri Partnership, and Math Finally Solves AI | #224

Predicting and optimizing the behavior of large ML models

Predicting and optimizing the behavior of large ML models

Как Америка стала великой

Как Америка стала великой

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com