Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Growing Neural Cellular Automata

Автор: Yannic Kilcher

Загружено: 2020-02-12

Просмотров: 23475

Описание:

The Game of Life on steroids! This model learns to grow complex patterns in an entirely local way. Each cell is trained to listen to its neighbors and update itself in a way such that, collectively, an overall goal is reached. Fascinating and interactive!

https://distill.pub/2020/growing-ca/
https://en.wikipedia.org/wiki/Conway%...

Abstract:
Most multicellular organisms begin their life as a single egg cell - a single cell whose progeny reliably self-assemble into highly complex anatomies with many organs and tissues in precisely the same arrangement each time. The ability to build their own bodies is probably the most fundamental skill every living creature possesses. Morphogenesis (the process of an organism’s shape development) is one of the most striking examples of a phenomenon called self-organisation. Cells, the tiny building blocks of bodies, communicate with their neighbors to decide the shape of organs and body plans, where to grow each organ, how to interconnect them, and when to eventually stop. Understanding the interplay of the emergence of complex outcomes from simple rules and homeostatic 1 feedback loops is an active area of research. What is clear is that evolution has learned to exploit the laws of physics and computation to implement the highly robust morphogenetic software that runs on genome-encoded cellular hardware.

This process is extremely robust to perturbations. Even when the organism is fully developed, some species still have the capability to repair damage - a process known as regeneration. Some creatures, such as salamanders, can fully regenerate vital organs, limbs, eyes, or even parts of the brain! Morphogenesis is a surprisingly adaptive process. Sometimes even a very atypical development process can result in a viable organism - for example, when an early mammalian embryo is cut in two, each half will form a complete individual - monozygotic twins!

The biggest puzzle in this field is the question of how the cell collective knows what to build and when to stop. The sciences of genomics and stem cell biology are only part of the puzzle, as they explain the distribution of specific components in each cell, and the establishment of different types of cells. While we know of many genes that are required for the process of regeneration, we still do not know the algorithm that is sufficient for cells to know how to build or remodel complex organs to a very specific anatomical end-goal. Thus, one major lynch-pin of future work in biomedicine is the discovery of the process by which large-scale anatomy is specified within cell collectives, and how we can rewrite this information to have rational control of growth and form. It is also becoming clear that the software of life possesses numerous modules or subroutines, such as “build an eye here”, which can be activated with simple signal triggers. Discovery of such subroutines and a mapping out of the developmental logic is a new field at the intersection of developmental biology and computer science. An important next step is to try to formulate computational models of this process, both to enrich the conceptual toolkit of biologists and to help translate the discoveries of biology into better robotics and computational technology.

Imagine if we could design systems of the same plasticity and robustness as biological life: structures and machines that could grow and repair themselves. Such technology would transform the current efforts in regenerative medicine, where scientists and clinicians seek to discover the inputs or stimuli that could cause cells in the body to build structures on demand as needed. To help crack the puzzle of the morphogenetic code, and also exploit the insights of biology to create self-repairing systems in real life, we try to replicate some of the desired properties in an in silico experiment.

Authors: Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, Michael Levin

Links:
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
BitChute: https://www.bitchute.com/channel/yann...
Minds: https://www.minds.com/ykilcher

Growing Neural Cellular Automata

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Ления — Искусственная жизнь из алгоритмов

Ления — Искусственная жизнь из алгоритмов

Моделирование развивающегося микрокосмоса | Путь к многоклеточности

Моделирование развивающегося микрокосмоса | Путь к многоклеточности

Reaction Mechanism class 11_Part 2

Reaction Mechanism class 11_Part 2

Organic neural cellular automata

Organic neural cellular automata

Как из простоты возникает жизнь частиц

Как из простоты возникает жизнь частиц

Пожалуй, главное заблуждение об электричестве [Veritasium]

Пожалуй, главное заблуждение об электричестве [Veritasium]

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

ВСЕ, ЧТО ВЫ НЕ ЗНАЛИ ОБ АТОМЕ И ЯДЕРНОЙ ЭНЕРГИИ

ВСЕ, ЧТО ВЫ НЕ ЗНАЛИ ОБ АТОМЕ И ЯДЕРНОЙ ЭНЕРГИИ

3D Cellular Automata - complex behavior from simple rules

3D Cellular Automata - complex behavior from simple rules

Теория «Грани хаоса» | Клеточные автоматы, Вольфрам и психология

Теория «Грани хаоса» | Клеточные автоматы, Вольфрам и психология

I Turned Cellular Automata into a Game

I Turned Cellular Automata into a Game

Growing neural cellular automata in PyTorch

Growing neural cellular automata in PyTorch

Жизнь Частиц - Игра

Жизнь Частиц - Игра "Жизнь" сделанная из частиц

Self-classifying MNIST Digits (Paper Explained)

Self-classifying MNIST Digits (Paper Explained)

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Coding Challenge 179: Elementary Cellular Automata

Coding Challenge 179: Elementary Cellular Automata

Self-Organising Neural Cellular Automata

Self-Organising Neural Cellular Automata

Neural Cellular Automata Grafting tutorial

Neural Cellular Automata Grafting tutorial

7.2: Wolfram Elementary Cellular Automata - The Nature of Code

7.2: Wolfram Elementary Cellular Automata - The Nature of Code

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com