Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

MIA: Marinka Zitnik, Actionable machine learning for drug discovery; Primer by Michelle Li

Автор: Broad Institute

Загружено: 2021-05-24

Просмотров: 2747

Описание:

Models, Inference and Algorithms
Broad Institute of MIT and Harvard
May 12, 2021

Chapters:
00:01 Primer - Michelle Li
46:18 Meeting - Marinka Zitnik

Meeting: Actionable machine learning for drug discovery and development

Marinka Zitnik
Dept. of Biomedical Informatics, Harvard University; Broad Institute
The success of machine learning depends heavily on the choice of features on which the algorithms are applied. For that reason, much of the efforts go into engineering of informative features. In this talk, I describe our efforts in learning deep representations that are actionable and allow endpoint users to ask what-if questions and receive robust predictions that can be interpreted meaningfully. These methods specify deep graph neural functions that map entities from a rich, interconnected dataset to points in a compact vector space, termed embeddings. Importantly, these graph neural methods are optimized to embed entities such that performing algebraic operations in the embedding space reflects the structure of the data. I will describe how these methods enabled repurposing of drugs for an emerging disease where our predictions were experimentally verified in human cells (Gysi et al., 2021). The methods also enabled discovering dozens of drug combinations safe for patients with considerably fewer unwanted side effects than today's treatments. The graph neural network approach can successfully prioritize ultra high-order combinations of drugs despite extreme scarcity of labeled data instances (Huang et al., 2020). Last, I will highlight Therapeutics Data Commons (https://tdcommons.ai), a platform with AI/ML-ready datasets and tasks for therapeutics together with an ecosystem of tools, libraries, leaderboards, and community resources.

Primer: Deep learning for biomedical networks: Methods, challenges, and frontiers

Michelle Li
Bioinformatics and Integrative Genomics Program, Zitnik Lab, Harvard Medical School

Biomedical networks are universal descriptors of systems of interacting elements, from protein interactions to disease networks, all the way to healthcare systems and scientific knowledge. Long-standing principles of network biology and medicine, while often unspoken in machine learning research, can provide the conceptual grounding for deep graph representation learning, explain its current successes and limitations, and inform future advances (Li et al. 2021). In this talk, I first synthesize a spectrum of algorithmic approaches that, at their core, leverage topological features to embed networks into compact vector spaces. I then highlight how deep graph representation learning techniques have become essential for studying molecules, genomics, therapeutics, and entire healthcare systems. I conclude with two vignettes where we develop graph neural networks for predicting disease outcomes (Alsentzer et al. 2020) and disentangling single cell behaviors.

For more information on the Broad Institute and Models, Inference and Algorithms visit: https://www.broadinstitute.org/mia​

Copyright Broad Institute, 2021. All rights reserved.

MIA: Marinka Zitnik, Actionable machine learning for drug discovery; Primer by Michelle Li

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

EWSC: Foundation models for therapeutic design and treatment prediction, Marinka Zitnik

EWSC: Foundation models for therapeutic design and treatment prediction, Marinka Zitnik

AI for Drug Design - Lecture 16 - Deep Learning in the Life Sciences (Spring 2021)

AI for Drug Design - Lecture 16 - Deep Learning in the Life Sciences (Spring 2021)

Broad Institute Machine Learning in Drug Discovery Symposium 2023: Raquel Rodríguez Pérez

Broad Institute Machine Learning in Drug Discovery Symposium 2023: Raquel Rodríguez Pérez

Машинное обучение в разработке лекарств в Bayer Pharmaceuticals: от моделей к молекулам

Машинное обучение в разработке лекарств в Bayer Pharmaceuticals: от моделей к молекулам

Christmas Jazz 2026 🎄 Relaxing Coffee Jazz Music & Christmas Bossa Nova Piano for Good Mood

Christmas Jazz 2026 🎄 Relaxing Coffee Jazz Music & Christmas Bossa Nova Piano for Good Mood

MIA: Kexin Huang, A General-Purpose Biomedical AI Agent; Primer: Hanchen Wang

MIA: Kexin Huang, A General-Purpose Biomedical AI Agent; Primer: Hanchen Wang

Что происходит с нейросетью во время обучения?

Что происходит с нейросетью во время обучения?

Катастрофа, которая нас (возможно) ждёт [Veritasium]

Катастрофа, которая нас (возможно) ждёт [Veritasium]

Generative AI in Drug Discovery and Pharma, with Insilico Medicine (CXOTalk #782)

Generative AI in Drug Discovery and Pharma, with Insilico Medicine (CXOTalk #782)

Lec 9 | MIT 9.00SC Introduction to Psychology, Spring 2011

Lec 9 | MIT 9.00SC Introduction to Psychology, Spring 2011

MIA: 10-Year Anniversary Celebration

MIA: 10-Year Anniversary Celebration

Machine Learning: A new approach to drug discovery

Machine Learning: A new approach to drug discovery

Positive December Jazz ☕ Sweet Morning Coffee Jazz & Bossa Nova Instrumental for Great Mood

Positive December Jazz ☕ Sweet Morning Coffee Jazz & Bossa Nova Instrumental for Great Mood

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Machine Learning in Drug Discovery Symposium - Nicolas Stransky

Machine Learning in Drug Discovery Symposium - Nicolas Stransky

Важные открытия XXI века: почему рак победил и что не так с клонированием? Что скрывают нобелевки?

Важные открытия XXI века: почему рак победил и что не так с клонированием? Что скрывают нобелевки?

The State of AI in Precision Health: Panel with Crystal Brown, Jeanne Latourelle, and Marinka Zitnik

The State of AI in Precision Health: Panel with Crystal Brown, Jeanne Latourelle, and Marinka Zitnik

Jeff Lichtman: Connectomics: Mapping the Brain | Harvard Department of Physics

Jeff Lichtman: Connectomics: Mapping the Brain | Harvard Department of Physics

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Broad Institute Machine Learning in Drug Discovery Symposium 2023: Imran Haque

Broad Institute Machine Learning in Drug Discovery Symposium 2023: Imran Haque

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]