Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Yee Whye Teh: On Bayesian Deep Learning and Deep Bayesian Learning (NIPS 2017 Keynote)

Автор: Steven Van Vaerenbergh

Загружено: 2017-12-07

Просмотров: 19391

Описание:

Breiman Lecture by Yee Whye Teh on Bayesian Deep Learning and Deep Bayesian Learning.

Abstract:
Probabilistic and Bayesian reasoning is one of the principle theoretical pillars to our understanding of machine learning. Over the last two decades, it has inspired a whole range of successful machine learning methods and influenced the thinking of many researchers in the community. On the other hand, in the last few years the rise of deep learning has completely transformed the field and led to a string of phenomenal, era-defining, successes. In this talk I will explore the interface between these two perspectives on machine learning, and through a number of projects I have been involved in, explore questions like: How can probabilistic thinking help us understand deep learning methods or lead us to interesting new methods? Conversely, how can deep learning technologies help us develop advanced probabilistic methods?

Bio:
I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, Probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Yee Whye Teh: On Bayesian Deep Learning and Deep Bayesian Learning (NIPS 2017 Keynote)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Deep Learning: Practice and Trends (NIPS 2017 Tutorial, parts I & II)

Deep Learning: Practice and Trends (NIPS 2017 Tutorial, parts I & II)

Chris Maddison | The future of representation learning

Chris Maddison | The future of representation learning

Tutorial Session: Variational Bayes and Beyond: Bayesian Inference for Big Data

Tutorial Session: Variational Bayes and Beyond: Bayesian Inference for Big Data

First lecture on Bayesian Deep Learning and Uncertainty Quantification

First lecture on Bayesian Deep Learning and Uncertainty Quantification

Bayesian Nonparametrics 1 - Yee Whye Teh - MLSS 2013 Tübingen

Bayesian Nonparametrics 1 - Yee Whye Teh - MLSS 2013 Tübingen

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

Bayesian Deep Learning — ANDREW GORDON WILSON

Bayesian Deep Learning — ANDREW GORDON WILSON

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Eric J  Ma   Bayesian Statistical Analysis with Python   PyCon 2017

Eric J Ma Bayesian Statistical Analysis with Python PyCon 2017

MLSS 2019 David Blei: Variational Inference: Foundations and Innovations (Part 1)

MLSS 2019 David Blei: Variational Inference: Foundations and Innovations (Part 1)

ESGW: Artificial Intelligence for Space - Panel Discussion

ESGW: Artificial Intelligence for Space - Panel Discussion

Introduction to Bayesian data analysis - part 1: What is Bayes?

Introduction to Bayesian data analysis - part 1: What is Bayes?

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

History of Bayesian Neural Networks (Keynote talk)

History of Bayesian Neural Networks (Keynote talk)

Что происходит с нейросетью во время обучения?

Что происходит с нейросетью во время обучения?

The Fisher Information

The Fisher Information

Bayesian Deep Learning and Probabilistic Model Construction - ICML 2020 Tutorial

Bayesian Deep Learning and Probabilistic Model Construction - ICML 2020 Tutorial

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Probabilistic Machine Learning - Prof. Zoubin Ghahramani

Probabilistic Machine Learning - Prof. Zoubin Ghahramani

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]