Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Cliff Brangwynne (Princeton & HHMI) 1: Liquid Phase Separation in Living Cells

Автор: Science Communication Lab

Загружено: 2018-11-12

Просмотров: 64489

Описание:

https://www.ibiology.org/biophysics/l...

Liquid-liquid phase separation drives the formation of membrane-less organelles such as P granules and the nucleolus. Brangwynne explains how this process works and its important role in normal cell function and disease.

How do the tiny, crowded, constantly moving molecules inside of cells come together to form functional structures such as organelles? Dr. Cliff Brangwynne explains that many of the organelles we are familiar with, such as the nucleus and the Golgi apparatus, are membrane bound. However, some organelles, such as P granules and nuclear bodies, are not surrounded by a membrane. Brangwynne and his colleagues have shown that these membrane-less organelles form by liquid-liquid phase separation, in a manner similar to the separation of oil and water. Brangwynne explains that intrinsically disordered regions (IDRs) in proteins can drive phase separation and are likely important for the formation of structures like P granules. Interestingly, IDRs are also found in proteins associated with diseases such as ALS and Alzheimer’s where protein aggregation is thought to be important.

In his second talk, Brangwynne focuses on the formation of the nucleolus; one of several membrane-less bodies found in the nucleus. Brangwynne’s lab was able to show that assembly of the nucleolus also can be described by the physics of phase separation. As they delved deeper into trying to understand this process, they found that a previously unknown nuclear actin network constrained the movement of the droplets that coalesce to form the nucleolus. They also found that surface tension plays a key role in organizing proteins within the nucleolus and may influence the structure of other membrane-less organelles within the cell.

In his final talk, Brangwynne tells us about recent work in which his lab has used light to control phase separation behavior in cells. By linking IDRs from proteins that are known to phase separate to protein domains that weakly oligomerize in response to light, his lab has generated tools that are allowing them to investigate the role of phase separation in different cell processes in many cell types.

Speaker Biography:
Dr. Cliff Brangwynne received his BS in Material Science and Engineering from Carnegie Mellon University and his PhD in Applied Physics from Harvard University. As a post-doctoral fellow at the Max Planck Institute for Molecular Cell Biology and Genetics in Dresden, Brangwynne combined his interests in soft-matter physics and cell biology to investigate the behavior of sub-cellular organelles in C. elegans embryos. This led to Brangwynne’s discovery that intracellular phase separation is an important mechanism underlying the self-assembly of biological materials.

Brangwynne is now an Associate Professor in Chemical and Biological Engineering at Princeton University and an Investigator of the Howard Hughes Medical Institute. His lab continues to investigate how the physical properties of intracellular materials influence their role in biological processes. Brangwynne was awarded the NIH Director’s New Innovator Award in 2012 and a MacArthur Fellowship in 2018 for his ground-breaking research.

Learn more about Brangwynne’s research here:
http://www.princeton.edu/cbe/people/f...

Cliff Brangwynne (Princeton & HHMI) 1: Liquid Phase Separation in Living Cells

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Клифф Брэнгвинн (Принстон и HHMI) 2: Многофазное жидкостное поведение ядра

Клифф Брэнгвинн (Принстон и HHMI) 2: Многофазное жидкостное поведение ядра

Ron Vale (UCSF, HHMI) 1: Molecular Motor Proteins

Ron Vale (UCSF, HHMI) 1: Molecular Motor Proteins

Jared Rutter (U. Utah, HHMI) 1: Mitochondria: The Mysterious Cellular Parasite

Jared Rutter (U. Utah, HHMI) 1: Mitochondria: The Mysterious Cellular Parasite

David Bartel (Whitehead Institute/MIT/HHMI) Part 1: MicroRNAs: Introduction to MicroRNAs

David Bartel (Whitehead Institute/MIT/HHMI) Part 1: MicroRNAs: Introduction to MicroRNAs

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Ramanujan Hegde (MRC) 1: Compartmentalization of Proteins Inside Cells

Ramanujan Hegde (MRC) 1: Compartmentalization of Proteins Inside Cells

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Bio-Essential Sugars Discovered in Samples from Asteroid Bennu

Bio-Essential Sugars Discovered in Samples from Asteroid Bennu

Cliff Brangwynne (Princeton & HHMI) 3: Using Light to Study and Control Intracellular Phase Behavior

Cliff Brangwynne (Princeton & HHMI) 3: Using Light to Study and Control Intracellular Phase Behavior

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Deshaies (Amgen) 1: A primer on the ubiquitin-proteasome system

Deshaies (Amgen) 1: A primer on the ubiquitin-proteasome system

Cell Organelles - Explained in a way that finally makes sense!

Cell Organelles - Explained in a way that finally makes sense!

Tom Rapoport (Harvard, HHMI) 1: Organelle Biosynthesis and Protein Sorting

Tom Rapoport (Harvard, HHMI) 1: Organelle Biosynthesis and Protein Sorting

Как устроена ФСБ России

Как устроена ФСБ России

Jared Rutter (U. Utah, HHMI) 3: Mitochondria: The Fuel and the Fire

Jared Rutter (U. Utah, HHMI) 3: Mitochondria: The Fuel and the Fire

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

ЭТОТ БЕЗУМНЫЙ НЕВИДИМЫЙ МИР

ЭТОТ БЕЗУМНЫЙ НЕВИДИМЫЙ МИР

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]