Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Partial Derivatives and the Gradient of a Function

Автор: Professor Dave Explains

Загружено: 2019-09-04

Просмотров: 291739

Описание:

We've introduced the differential operator before, during a few of our calculus lessons. But now we will be using this operator more and more over the prime symbol we are used to when describing differentiation, as from now on we will frequently be differentiating with respect to a specific variable, and we will have to keep track of which one it is. This leads us to the concept of partial derivatives. Although partial differential equations sound like extremely advanced math, and they will get pretty hairy a little later in the series, they're aren't too daunting when just going over their definitions, so let's see what they are and also learn about the gradient of a function, which involves partial derivatives.

Script by Howard Whittle

Watch the whole Mathematics playlist: http://bit.ly/ProfDaveMath

Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1
Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2
General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem
Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem
Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem
Biology Tutorials: http://bit.ly/ProfDaveBio

EMAIL► [email protected]
PATREON►   / professordaveexplains  

Check out "Is This Wi-Fi Organic?", my book on disarming pseudoscience!
Amazon: https://amzn.to/2HtNpVH
Bookshop: https://bit.ly/39cKADM
Barnes and Noble: https://bit.ly/3pUjmrn
Book Depository: http://bit.ly/3aOVDlT

Partial Derivatives and the Gradient of a Function

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Vector Fields, Divergence, and Curl

Vector Fields, Divergence, and Curl

But what is a partial differential equation?  | DE2

But what is a partial differential equation? | DE2

Implicit Differentiation

Implicit Differentiation

Оксфордский анализ: объяснение частного дифференцирования с примерами

Оксфордский анализ: объяснение частного дифференцирования с примерами

Совет старика.

Совет старика.

Geometric Meaning of the Gradient Vector

Geometric Meaning of the Gradient Vector

Градиенты и частные производные

Градиенты и частные производные

This is why you're learning differential equations

This is why you're learning differential equations

Double and Triple Integrals

Double and Triple Integrals

14: Directional Derivatives and Gradient - Valuable Vector Calculus

14: Directional Derivatives and Gradient - Valuable Vector Calculus

Why is dxdy=rdrdθ? (geometry vs Jacobian)

Why is dxdy=rdrdθ? (geometry vs Jacobian)

Line Integrals Are Simpler Than You Think

Line Integrals Are Simpler Than You Think

Divergence and curl:  The language of Maxwell's equations, fluid flow, and more

Divergence and curl: The language of Maxwell's equations, fluid flow, and more

Partial derivatives, introduction

Partial derivatives, introduction

Каково это — изобретать математику?

Каково это — изобретать математику?

Лучшее объяснение частных производных и градиентов

Лучшее объяснение частных производных и градиентов

Суперважная разработка для правительства | Зарплата 50к рублей (English subtitles) @Максим Кац

Суперважная разработка для правительства | Зарплата 50к рублей (English subtitles) @Максим Кац

Старейшая нерешённая математическая задача [Veritasium]

Старейшая нерешённая математическая задача [Veritasium]

Directional Derivatives | What's the slope in any direction?

Directional Derivatives | What's the slope in any direction?

What is Jacobian? | The right way of thinking derivatives and integrals

What is Jacobian? | The right way of thinking derivatives and integrals

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]