Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Pinecone Database (Vector Database) AI example

Автор: KanuITAcademy

Загружено: 2025-08-04

Просмотров: 83

Описание:

Pinecone Database (Vector Database) AI example

______________Code_______________

Step 1: Install required libraries (run in terminal or notebook if not already installed)
pip install --upgrade openai pinecone

Step 2: Import libraries
from pinecone import Pinecone, ServerlessSpec
import openai

Step 3: Set your API keys
#OPENAI_API_KEY = "your-openai-api-key"
#PINECONE_API_KEY = "your-pinecone-api-key"


Step 3: Set your API keys
PINECONE_API_KEY = "your pinecone api key"
OPENAI_API_KEY = "your openai api key"


Step 4: Create Pinecone client
pc = Pinecone(api_key=PINECONE_API_KEY)

Step 5: Create index if it doesn't exist
index_name = "persondetails-search"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=1536, # required for OpenAI embeddings (text-embedding-ada-002)
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1")
)

Step 6: Connect to Pinecone index
index = pc.Index(index_name)

Step 7: Define get_embedding function using OpenAI's new SDK
client = openai.OpenAI(api_key=OPENAI_API_KEY)

def get_embedding(text):
response = client.embeddings.create(
input=[text],
model="text-embedding-ada-002"
)
return response.data[0].embedding

Step 8: Embed and upsert a document
doc_text = "My name is Kanu Butani . I am a software IT engineer and also I write Poems. I sing and i like music. Milind is Kanu's buddy, they both go to office together"
doc_vector = get_embedding(doc_text)


index.upsert(vectors=[
{
"id": "doc1",
"values": doc_vector,
"metadata": {"text": doc_text}
}
])

Step 9: Query the index with a user question
query_text = "Kanu's Friend?"
query_vector = get_embedding(query_text)
#print(query_text)
#print(query_vector)
results = index.query(
vector=query_vector,
top_k=3,
include_metadata=True
)
#print(results)
Step 10: Print matches
for match in results["matches"]:
print(f"\nScore: {match['score']}")
print(f"Text: {match['metadata']['text']}")

prompt = query_text

context = {doc_text}
print(context)
Question = {query_text}
print(Question)
prompt = Question

from openai import OpenAI

client = OpenAI(api_key="your key")

response = client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": f"""Use the following context to answer the question.

Context:
{context}

Question: {query_text}

Answer:"""
}
],
temperature=0.2
)
Print the generated answer
print("Answer:", response.choices[0].message.content) IBM Maximo tutorials
IBM Maximo configuration
IBM Maximo automation
Maximo scripting
IBM Maximo escalation setup
IBM Maximo business rules
Maximo for beginners
Maximo integration
IBM Maximo training
AI tutorials
Artificial Intelligence learning
Machine Learning basics
AI tools for beginners
Data science for IT professionals
IT automation
IT and AI education
Enterprise asset management IBM Maximo
Maximo developer guide
Python for Maximo
Maximo workflows
Maximo advanced topics
IBM Maximo implementation
Maximo system configuration
IT learning channel
AI and IT explained

Pinecone Database (Vector Database) AI example

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

OpenAI Embeddings and Vector Databases Crash Course

OpenAI Embeddings and Vector Databases Crash Course

The Thinking Game | Full documentary | Tribeca Film Festival official selection

The Thinking Game | Full documentary | Tribeca Film Festival official selection

Стратегии фрагментации в RAG: оптимизация данных для продвинутых ответов ИИ

Стратегии фрагментации в RAG: оптимизация данных для продвинутых ответов ИИ

RAG Tutorial

RAG Tutorial

LangChain

LangChain

Elon Musk: A Different Conversation w/ Nikhil Kamath | Full Episode | People by WTF Ep. 16

Elon Musk: A Different Conversation w/ Nikhil Kamath | Full Episode | People by WTF Ep. 16

Мессенджер Max - это аналог китайского WeChat. Но на самом деле это не так

Мессенджер Max - это аналог китайского WeChat. Но на самом деле это не так

Vector Database Tutorial FOR Beginners with PineCone [ Hands on Lab]

Vector Database Tutorial FOR Beginners with PineCone [ Hands on Lab]

I Tried 289 AI Tools - These Are The BEST For Making Money Online

I Tried 289 AI Tools - These Are The BEST For Making Money Online

Understanding How Vector Databases Work!

Understanding How Vector Databases Work!

Prompt Engineering | Kanu Butani

Prompt Engineering | Kanu Butani

UKRAINA RAPORT Z WOJNY 30 LISTOPADA. Rewelacje WSJ - trwoga w Europie.

UKRAINA RAPORT Z WOJNY 30 LISTOPADA. Rewelacje WSJ - trwoga w Europie.

Updated Langchain

Updated Langchain

What is a vector database? Why are they critical infrastructure for #ai #applications?

What is a vector database? Why are they critical infrastructure for #ai #applications?

Hybrid Search RAG With Langchain And Pinecone Vector DB

Hybrid Search RAG With Langchain And Pinecone Vector DB

How to build recommendation systems with Pinecone in 2 minutes ; )

How to build recommendation systems with Pinecone in 2 minutes ; )

How Amazon’s New AI Glasses Actually Work

How Amazon’s New AI Glasses Actually Work

Fei-Fei Li: Spatial Intelligence, World Models & the Future of AI

Fei-Fei Li: Spatial Intelligence, World Models & the Future of AI

Circular AI Deals Fuel Bubble Debate | Bloomberg Tech: Asia 11/28/25

Circular AI Deals Fuel Bubble Debate | Bloomberg Tech: Asia 11/28/25

The ONE Data Analyst Role That’s AI-Proof (And Pays $100K+ More)

The ONE Data Analyst Role That’s AI-Proof (And Pays $100K+ More)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]