П.В.3(р). Уравнение касательной и нормали к графику функции (практикум)
Автор: Математика на стекле
Загружено: 2021-02-21
Просмотров: 45
П.В.3(р). Видео представляет собой практическое занятие. На нём рассмотрены примеры, в которых находятся производные функций, заданных неявно и параметрически, а также показательно-степенных функций. Находятся дифференциалы функций. Находится приближённое значение заданной функции при помощи дифференциала. Составляются уравнения касательной и нормали к графикам функций. Занятие ведётся на русском языке.
Список тем лекций и практических занятий:
Разделы математического анализа для специальности «математика»:
А — Введение в анализ (множества, отображения, комбинаторика, мощность множества, точные грани множества);
Б — Предел последовательности, предел функции, непрерывность;
В — Производная функции, её свойства;
Г — Исследование функций с помощью дифференциального исчисления;
Д — Неопределённый интеграл;
Е — Интеграл Римана, его применение;
Ж — Несобственные интегралы;
З — Функции ограниченной вариации, интеграл Римана-Стилтьеса;
И — Числовые ряды, бесконечные призведения;
К — Функциональные ряды, степенные ряды;
Л — Ряды Фурье, интеграл Фурье;
М — Дифференциальное исчисление функций многих переменных;
Н — Двойные интегралы;
О — Тройные интегралы;
П — Криволинейные интегралы;
Р — Поверхностные интегралы;
С — Теория поля;
Т — Интегралы, зависящие от параметра;
У — Несобственные интегралы, зависящие от параметра;
Разделы высшей математики для студентов технических вузов:
Ф — Введение в анализ. Производная функции;
Х — Неопределённый интеграл. Интеграл Римана, его применение;
Ц — Кратные, криволинейные, поверхностные интегралы, теория поля;
Ч — Обыкновенные дифференциальные уравнения;
Ш — Числовые и функциональные ряды. Ряды Фурье, интеграл Фурье;
Э — Теория функций комплексного переменного, операционное исчисление;
Ю — Линейная алгебра;
Я — Аналитическая геометрия.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: