Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Tutorial on Statistical Inference On Representational Geometries

Автор: MITCBMM

Загружено: 2022-12-02

Просмотров: 2162

Описание:

Heiko Schütt, NYU

Representational similarity analysis (RSA) is a popular method for comparing representations when a mapping between them is not available. One important comparison RSA is used for is between neuronal measurements and models of brain computation like deep neural networks. RSA is a two step process, first a matrix of pairwise dissimilarities between conditions is computed. This matrix is then a summary of the representational geometry, which can be compared directly between different representations as it has the same dimensions. In the first half of this tutorial, I will go through some recent advancements for RSA that improve the reliability and statistical accuracy of RSA substantially: First, I will explain the reasoning for cross-validated distance measures for computing the dissimilarity matrix and for whitened similarity measures to compare them to each other. Then, I will explain why simultaneous generalization to new subjects and new stimuli is hard and a solution based on bootstrapping. And finally, I will explain necessary cross-validation based extensions for flexible models. In the second half of this tutorial, I will give a guide how to run these analyses using our new rsatoolbox in python by going through demo notebooks that illustrate the functionality.

Relevant papers:
Schütt et al., 2021: Statistical inference on representational geometries
Walther et al., 2016: Reliability of dissimilarity measures for multi-voxel pattern analysis
Diedrichsen et al., 2021: Comparing representational geometries using whitened unbiased-distance-matrix similarity

GitHub repository: https://github.com/rsagroup/rsatoolbox/
GitHub demo repository: https://github.com/rsagroup/rsatoolbo...

Tutorial on Statistical Inference On Representational Geometries

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Cell Type-Specific Transcriptomics

Cell Type-Specific Transcriptomics

fMRI Bootcamp Part 7 - Representational Similarity

fMRI Bootcamp Part 7 - Representational Similarity

Normalization models of attention

Normalization models of attention

Jörn Diedrichsen: What is the function of the human cerebellum across cognitive domains?

Jörn Diedrichsen: What is the function of the human cerebellum across cognitive domains?

"The Power and Limits of Deep Learning" with Yann LeCun

Зеленский едет к Трампу, Правительство ждет коллапса, Украина готовит выборы? Жуковский, Чижов

Зеленский едет к Трампу, Правительство ждет коллапса, Украина готовит выборы? Жуковский, Чижов

Language Models as World Models

Language Models as World Models

Identifying Subgroups in Biomedical Datasets using Data Attribution

Identifying Subgroups in Biomedical Datasets using Data Attribution

Introducing MRI: Diffusion Imaging (49 of 56)

Introducing MRI: Diffusion Imaging (49 of 56)

Learning to Reason, Insights from Language Modeling

Learning to Reason, Insights from Language Modeling

Dynamic multivariate task fMRI analysis using Partial Least Squares in Matlab

Dynamic multivariate task fMRI analysis using Partial Least Squares in Matlab

Class 01 | Advanced Microeconomics | Duncan Foley

Class 01 | Advanced Microeconomics | Duncan Foley

Vision beyond ImageNet: Understanding the brain mechanisms underlying visual recognition

Vision beyond ImageNet: Understanding the brain mechanisms underlying visual recognition

Cornell ECE 5545: ML HW & Systems. Lecture 0: Introduction

Cornell ECE 5545: ML HW & Systems. Lecture 0: Introduction

fMRI Bootcamp Part 4 - Multivariate Analysis

fMRI Bootcamp Part 4 - Multivariate Analysis

Nikolaus Kriegeskorte - Deep neural networks: a new framework for modelling brain information [2016]

Nikolaus Kriegeskorte - Deep neural networks: a new framework for modelling brain information [2016]

Stevens Institute of Technology - President's Distinguished Lecture Series: Dr. Darío Gil ’98

Stevens Institute of Technology - President's Distinguished Lecture Series: Dr. Darío Gil ’98

Dinis Abranches - From noise to knowledge: stochastic machine learning for materials design

Dinis Abranches - From noise to knowledge: stochastic machine learning for materials design

Panel Discussion: Open Questions in Theory of Learning

Panel Discussion: Open Questions in Theory of Learning

Capitalism: Competition, Conflict and Crises, Lecture 6:  Competition

Capitalism: Competition, Conflict and Crises, Lecture 6: Competition

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]