Solve Difference Equation using Z-Transform | uₙ₊₂+4uₙ₊₁+3uₙ=3ⁿ | u₀=0, u₁=1 | BMATEC301 / BMATE301
Автор: Mathematics Tutor
Загружено: 2024-09-27
Просмотров: 6540
🎓 Solve Difference Equation using Z-Transform | uₙ₊₂ + 4uₙ₊₁ + 3uₙ = 3ⁿ | BMATEC301 / BMATE301 | Mathematics-III
In this video, we solve a non-homogeneous linear difference equation using the Z-Transform method with given initial conditions.
Given:
uₙ₊₂ + 4uₙ₊₁ + 3uₙ = 3ⁿ, u₀=0, u₁=1 — Find uₙ
We apply the Z-transform to convert the recurrence relation into an algebraic equation in z, substitute the initial conditions, find U(z), and then use the Inverse Z-Transform to determine the complete solution for u_n.
This step-by-step derivation follows the VTU Mathematics-III syllabus for BMATEC301 / BMATE301, covering all exam-relevant concepts clearly.
📘 Syllabus Reference – BMATEC301 / BMATE301 (Module 3 & 4):
Z-Transform and its properties
Initial and Final Value Theorems
Inverse Z-Transform using Partial Fractions
Solving Linear Constant Coefficient Difference Equations
Non-homogeneous case with exponential input
🔍 Topics Covered:
✔ Applying Z-transform to difference equations
✔ Using given initial conditions in z-domain
✔ Finding U(z)U(z)U(z) and performing partial fraction decomposition
✔ Taking inverse Z-transform to get unu_nun
✔ VTU-style explanation and final closed-form solution
💎 Support Us: Join our channel and get access to exclusive perks 👇
🔗 / @officialmathematicstutor
#DifferenceEquation #ZTransform #BMATEC301 #BMATE301 #MathematicsIII #VTUMathematics3 #VTUExamPreparation #VTUSyllabus #VTUMaths3 #InverseZTransform #ZTransformProblems #EngineeringMathematics #VTU2024 #VTUQuestionSolutions
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: