Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Investigating the volume &diversity of data needed for generalizable antibody-antigen ∆∆G prediction

Автор: Boston Protein Design and Modeling Club

Загружено: 2023-08-04

Просмотров: 1587

Описание:

Presented on August 3rd 2023 by Alissa Hummer

Abstract:
Antibody-antigen binding affinity lies at the heart of therapeutic antibody development: efficacy is guided by specific binding and control of affinity. Here we present Graphinity, an equivariant graph neural network architecture built directly from antibody-antigen structures that achieves state-of-the-art performance on experimental ∆∆G prediction. However, our model, like previous methods, appears to be overtraining on the few hundred experimental data points available. To test if we could overcome this problem, we built a synthetic dataset of nearly 1 million FoldX-generated ∆∆G values. Graphinity achieved Pearson’s correlations nearing 0.9 and was robust to train-test cutoffs and noise on this dataset. The synthetic dataset also allowed us to investigate the role of dataset size and diversity in model performance. Our results indicate there is currently insufficient experimental data to accurately and robustly predict ∆∆G, with orders of magnitude more likely needed. Dataset size is not the only consideration – our tests demonstrate the importance of diversity. We also confirm that Graphinity can be used for experimental binding prediction by applying it to a dataset of over 36,000 Trastuzumab variants.

Investigating the volume &diversity of data needed for generalizable antibody-antigen ∆∆G prediction

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Predicting protein folding stability and aggregation propensity using large-scale experiments

Predicting protein folding stability and aggregation propensity using large-scale experiments

Discrete diffusion models for generative protein design

Discrete diffusion models for generative protein design

Review and discussion of AlphaFold3

Review and discussion of AlphaFold3

BindCraft: one-shot design of functional protein binders

BindCraft: one-shot design of functional protein binders

Jointly Embedding Protein Structures and Sequences through Residue Level Alignment

Jointly Embedding Protein Structures and Sequences through Residue Level Alignment

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Tech Left Behind in S&P 500’s Latest Rebound | Bloomberg Tech 12/3/2025

Tech Left Behind in S&P 500’s Latest Rebound | Bloomberg Tech 12/3/2025

CFC Council Meeting 12/3/25

CFC Council Meeting 12/3/25

Introduction to AI for Protein Design

Introduction to AI for Protein Design

Model. Package. Deploy. Repeat: A DevOps Approach to Biomolecular Scalability

Model. Package. Deploy. Repeat: A DevOps Approach to Biomolecular Scalability

Massively parallel discovery of peptides to inhibit cellular protein interactions

Massively parallel discovery of peptides to inhibit cellular protein interactions

De novo design of miniprotein-based natural killer cell engagers

De novo design of miniprotein-based natural killer cell engagers

From DNA Origami to Protein Design: Symmetry-Guided Principles Across Scales

From DNA Origami to Protein Design: Symmetry-Guided Principles Across Scales

Physics-aware agentic artificial intelligence to model, design and discover proteins

Physics-aware agentic artificial intelligence to model, design and discover proteins

Recent methods for protein structure generation and design

Recent methods for protein structure generation and design

Unlocking the Power of AI for Work-Based Learning

Unlocking the Power of AI for Work-Based Learning

Маркеры дестабилизации: как могут выглядеть признаки системной неустойчивости?

Маркеры дестабилизации: как могут выглядеть признаки системной неустойчивости?

Design of small molecule binding proteins using deep learning

Design of small molecule binding proteins using deep learning

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Ускоренный курс LLM по тонкой настройке | Учебное пособие LLM по тонкой настройке

Ускоренный курс LLM по тонкой настройке | Учебное пособие LLM по тонкой настройке

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]