Towards General-Purpose Model-Free Reinforcement Learning | ICLR 2025 (Paper Walkthrough)
Автор: Ribbit Ribbit - Discover Research The Fun Way
Загружено: 2025-01-29
Просмотров: 916
📖Paper: https://arxiv.org/abs/2501.16142
🐸RibbitRibbit: https://ribbitribbit.co/paper/arxiv.2...
🐈⬛Github: https://github.com/facebookresearch/MRQ
👥Authors: Scott Fujimoto, Pierluca D'Oro, Amy Zhang, Yuandong Tian, Michael Rabbat
🏫Institutes: Meta FAIR
MR.Q: Model-Free RL's Surprisingly Linear Secret! 🚗🌱
This research proposes MR.Q, a model-free reinforcement learning algorithm. 🦉💡 Unlike previous model-based approaches that use complex planning 🚜🛣️, MR.Q leverages model-based representations to approximately linearize the value function 🌿📊, achieving comparable performance with significantly faster training 🚀🍔 and evaluation times 🏎️⚡—all while using fewer parameters! 🐢📉 This contrasts with existing model-free methods, which often require extensive tuning for specific benchmarks. 🍩🔧🐙
Want to discover more AI papers like this? 🚀 Head over to https://RibbitRibbit.co 🐸 — Discover Research The Fun Way!
#reinforcementlearning
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: