Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Max Orchard: Fibre Bundles, Principal G-Bundles

Автор: Australian Geometric PDE Seminar

Загружено: 2024-03-08

Просмотров: 1292

Описание:

Max Orchard introduces some basic concepts needed for the study of Yang-Mills theory. In particular, Max describes fibre and principal G-Bundles along with the notion of Ehresmann connection.

Max Orchard: Fibre Bundles, Principal G-Bundles

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Max Orchard: The Yang-Mills equations

Max Orchard: The Yang-Mills equations

4-dimensional cohomogeneity one gradient Ricci solitons (Patrick Donovan)

4-dimensional cohomogeneity one gradient Ricci solitons (Patrick Donovan)

Session 9. Quantum Phase Estimation (QPE) | Taha Selim & Abderlrahman Elsayed

Session 9. Quantum Phase Estimation (QPE) | Taha Selim & Abderlrahman Elsayed

New invariant metrics and a counterexample to the Kobayashi--Wu conjecture (Kyle Broder)

New invariant metrics and a counterexample to the Kobayashi--Wu conjecture (Kyle Broder)

Vishnu Mangalath: Stucture of Yang-Mills equations

Vishnu Mangalath: Stucture of Yang-Mills equations

Chapter 6 | More About Equations and Inequalities | The Math Aficionado

Chapter 6 | More About Equations and Inequalities | The Math Aficionado

Season 05: Yang-Mills

Season 05: Yang-Mills

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Introduction to Yang-Mills and 4-manifold topology

Introduction to Yang-Mills and 4-manifold topology

The Monopolist's Problem (Cale Rankin)

The Monopolist's Problem (Cale Rankin)

The new AI race: Enterprise innovation in 2026

The new AI race: Enterprise innovation in 2026

Peter Price: Variational Formulas and Vanishing Theorems in Geometry and Physics

Peter Price: Variational Formulas and Vanishing Theorems in Geometry and Physics

Harmonic-Einstein metrics on Riemann surfaces and Higgs bundles (Adam Thompson)

Harmonic-Einstein metrics on Riemann surfaces and Higgs bundles (Adam Thompson)

Elon Musk Closes In On $800 Billion Net Worth After XAI’s Latest Funding Round

Elon Musk Closes In On $800 Billion Net Worth After XAI’s Latest Funding Round

High codimension MCF of spacelike-convex submanifolds with one spacelike codimension (Qiyu Zhou)

High codimension MCF of spacelike-convex submanifolds with one spacelike codimension (Qiyu Zhou)

Vishnu Mangalath: Uhlenbeck Compactness

Vishnu Mangalath: Uhlenbeck Compactness

Trump Launches Board of Peace Amid Discord; Tech Leads Stock Rally | Bloomberg Brief 1/22/2026

Trump Launches Board of Peace Amid Discord; Tech Leads Stock Rally | Bloomberg Brief 1/22/2026

Mają panele, pompę ciepła i magazyn energii. Grzeją się przy kominku

Mają panele, pompę ciepła i magazyn energii. Grzeją się przy kominku

Singular sets of energy minimizing maps

Singular sets of energy minimizing maps

Microsoft CEO Wants YOU to pay more for Electricity

Microsoft CEO Wants YOU to pay more for Electricity

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com