Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Автор: AutoML Seminars

Загружено: 2024-09-19

Просмотров: 1944

Описание:

Title: The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Speaker: Robert Tjarko Lange (https://roberttlange.com/)

Abstract:

One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world’s most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scient....

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Real-time Experiments with an AI Co-Scientist - Stefania Druga, fmr. Google Deepmind

Real-time Experiments with an AI Co-Scientist - Stefania Druga, fmr. Google Deepmind

The Thinking Game | Full documentary | Tribeca Film Festival official selection

The Thinking Game | Full documentary | Tribeca Film Festival official selection

TabArena: A Living Benchmark for Machine Learning on Tabular Data

TabArena: A Living Benchmark for Machine Learning on Tabular Data

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Hassabis on an AI Shift Bigger Than Industrial Age

Hassabis on an AI Shift Bigger Than Industrial Age

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Full interview:

Full interview: "Godfather of AI" shares prediction for future of AI, issues warnings

The future of intelligence | Demis Hassabis (Co-founder and CEO of DeepMind)

The future of intelligence | Demis Hassabis (Co-founder and CEO of DeepMind)

Accurate predictions on small data (and time series) with the tabular foundation model TabPFN

Accurate predictions on small data (and time series) with the tabular foundation model TabPFN

Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues

Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues

MCP vs API: Simplifying AI Agent Integration with External Data

MCP vs API: Simplifying AI Agent Integration with External Data

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Почему ИИ не может совершать собственные открытия? — С Яном Лекуном

Почему ИИ не может совершать собственные открытия? — С Яном Лекуном

'Musk Will Get Richer, People Will Get Unemployed': Nobel Laureate Hinton on AI

'Musk Will Get Richer, People Will Get Unemployed': Nobel Laureate Hinton on AI

Multi-Objective AutoML: Towards Accurate and Robust models

Multi-Objective AutoML: Towards Accurate and Robust models

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

The AI Revolution Is Underhyped | Eric Schmidt | TED

The AI Revolution Is Underhyped | Eric Schmidt | TED

AI Trends 2026: Quantum, Agentic AI & Smarter Automation

AI Trends 2026: Quantum, Agentic AI & Smarter Automation

2025's Biggest Breakthroughs in Physics

2025's Biggest Breakthroughs in Physics

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com