Derivative of arcsin(x) - d/dx [ sin^-1(x) ] - Inverse Sine function
Автор: MasterWuMathematics
Загружено: 2021-03-31
Просмотров: 2090
In this video, we find the derivative of arcsin(x) by implicit differentiation. First we rearrange the Pythagorean Identity...
cos^2(y) + sin^2(y) = 1 to...
cos*(y) = sqrt(1 - sin^2(y))
We then define the function y = arcsin(x), which means sin(y) = x
#Calculus #Differentiation #Derivatives #Trigonometry
Thanks for watching. Please give me a "thumbs up" if you have found this video helpful.
Please ask me a maths question by commenting below and I will try to help you in future videos.
I would really appreciate any small donation which will help me to help more math students of the world. Please donate here: https://paypal.me/MasterWu
Follow me on Twitter! twitter.com/MasterWuMath
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: