AI Frontiers: Robotics Advancements on 2025-05-27
Автор: AI Frontiers
Загружено: 2025-05-30
Просмотров: 25
This video explores groundbreaking robotics research published on May 27, 2025, highlighting advancements in autonomous navigation, cloud-based systems, and multimodal learning. Key innovations include MIND-Stack, a modular navigation architecture balancing interpretability and performance, and LOKI, a framework for efficient robot morphology design. These studies emphasize modular architectures, cloud integration, and human-centered design, addressing challenges like computational efficiency and real-world deployment. The synthesis of these insights was created using AI tools: GPT-Qwen (qwen-max) for content summarization, Deepgram for TTS synthesis, and Stable Diffusion for image generation. Together, they showcase the transformative potential of robotics in healthcare, transportation, and beyond.
1. Felix Jahncke et al. (2025). MIND-Stack: Modular, Interpretable, End-to-End Differentiability for Autonomous Navigation. http://arxiv.org/pdf/2505.21734v1
2. Yufeng Yang et al. (2025). Real-World Deployment of Cloud Autonomous Mobility System Using 5G Networks for Outdoor and Indoor Environments. http://arxiv.org/pdf/2505.21676v1
3. Hyeonseong Jeon et al. (2025). Convergent Functions, Divergent Forms. http://arxiv.org/pdf/2505.21665v1
4. Yifan Yin et al. (2025). PartInstruct: Part-level Instruction Following for Fine-grained Robot Manipulation. http://arxiv.org/pdf/2505.21652v1
5. Pranav N. Thakkar et al. (2025). CLAMP: Crowdsourcing a LArge-scale in-the-wild haptic dataset with an open-source device for Multimodal robot Perception. http://arxiv.org/pdf/2505.21495v1
6. Haoming Song et al. (2025). Hume: Introducing System-2 Thinking in Visual-Language-Action Model. http://arxiv.org/pdf/2505.21432v1
7. Xupeng Zhu et al. (2025). EquAct: An SE(3)-Equivariant Multi-Task Transformer for Open-Loop Robotic Manipulation. http://arxiv.org/pdf/2505.21351v1
8. Yeshwanth Venkatesha et al. (2025). Fast and Cost-effective Speculative Edge-Cloud Decoding with Early Exits. http://arxiv.org/pdf/2505.21594v1
9. Timur Akhtyamov et al. (2025). EgoWalk: A Multimodal Dataset for Robot Navigation in the Wild. http://arxiv.org/pdf/2505.21282v1
10. Leon Tolksdorf et al. (2025). Collision Probability Estimation for Optimization-based Vehicular Motion Planning. http://arxiv.org/pdf/2505.21161v1
11. Nawshin Mannan Proma et al. (2025). SCALOFT: An Initial Approach for Situation Coverage-Based Safety Analysis of an Autonomous Aerial Drone in a Mine Environment. http://arxiv.org/pdf/2505.20969v1
12. Zhennan Wang et al. (2025). CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving. http://arxiv.org/pdf/2505.21581v1
13. Nikos Giannakakis et al. (2025). Object-Centric Action-Enhanced Representations for Robot Visuo-Motor Policy Learning. http://arxiv.org/pdf/2505.20962v1
14. Jun Liu et al. (2025). COM Adjustment Mechanism Control for Multi-Configuration Motion Stability of Unmanned Deformable Vehicle. http://arxiv.org/pdf/2505.20926v1
15. Bingxiang Kang et al. (2025). HS-SLAM: A Fast and Hybrid Strategy-Based SLAM Approach for Low-Speed Autonomous Driving. http://arxiv.org/pdf/2505.20906v1
16. Max Bastian Mertens et al. (2025). Generalized Coordination of Partially Cooperative Urban Traffic. http://arxiv.org/pdf/2505.20879v1
17. Zhefeng Cao et al. (2025). G-DReaM: Graph-conditioned Diffusion Retargeting across Multiple Embodiments. http://arxiv.org/pdf/2505.20857v1
18. Zeming Wu et al. (2025). Collision-free Control Barrier Functions for General Ellipsoids via Separating Hyperplane. http://arxiv.org/pdf/2505.20847v1
19. Peiyuan Zhi et al. (2025). Learning Unified Force and Position Control for Legged Loco-Manipulation. http://arxiv.org/pdf/2505.20829v1
20. Lanxiang Zheng et al. (2025). GET: Goal-directed Exploration and Targeting for Large-Scale Unknown Environments. http://arxiv.org/pdf/2505.20828v2
Disclaimer: This video uses arXiv.org content under its API Terms of Use; AI Frontiers is not affiliated with or endorsed by arXiv.org.

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: